Documental proof 1.1.1 2021-22 CO PO

B.Sc. Biotechnology 2021 Course

SEM-I

Course	Course no	Title	Credits	Course Outcome
Core T	BBT21-101	Animal Science	3	 i. Students understand the Basic classification and characterizing features of animal kingdom ii. Students to gain knowledge of physiology, endocrinology and parasitology iii. Animals for commercial applications; vermicomposting, apiculture, sericulture.
Core T	BBT21-102	Plant Science	3	 i. Students understand the classification and characterizing features of each class of the plant kingdom ii. Organization, morphology and physiology of parts of plants and seeds.
Core T	BBT21-103	Fundamentals in Chemistry & Biochemistry	3	 Gain basic understanding of structure and metabolism of carbohydrates and lipids Fundamental knowledge of Physicochemical measurements and properties of their solutions.
Core P	BBT21-104	Animal Science Lab	3	 i. Practical study of morphology of specimens from each phylum ii. Study of human blood groups iii. Excursion tour to commercial animal biotechnology centers.
Core P	BBT21-105	Plant Science Lab	3	 i. Practical study of morphology, habitat and mode of nutrition of specimens from each phylum ii. Study and dissection of plant specimens from each phylum in detail iii. Visit to plant reserves/ forests
Core P	BBT21-106	Fundamentals in Chemistry & Biochemistry Lab	3	 i. Students will have understanding of good laboratory practices, safe handling of equipment's, safety, accuracy and reliability ii. Preparations of buffers and solutions

				iii.	Quantitative estimations of biomolecules and determination
				iv.	of lambda max Learn thin layer chromatography
AECC-1	BBT21-107	Mathematics for Biologists-I	2	i.	The Mathematics for Biologists course equips students with the mathematical tools and concepts necessary to analyze and
				ii.	Upon completion of the course, students will be proficient in using mathematical techniques to model biological processes, such as population dynamics, genetics, and ecological interactions.
				iii.	They will learn to apply calculus, statistics, and linear algebra to solve biological problems, including data analysis and experimental design
GE-1	BBT21-108	Basic Programing for Biologists	2	i.	The Basic Programming for Biologists course introduces students to fundamental programming concepts and skills tailored to the needs of biological research and analysis.
				ii.	Upon completion of the course, students will be proficient in writing and understanding code, utilizing programming languages such as Python or R to process biological data, automate repetitive tasks, and perform statistical analyses.
	BBT21-108	Health & Nutrition		i.	Studying Health & Nutrition provides students with a comprehensive understanding of the principles that influence human well-being and dietary choices.
				ii.	Upon completing this course, students will gain knowledge about the essential nutrients, their functions, and their roles in maintaining optimal health
				iii.	They will learn to analyze dietary patterns, assess

					nutritional needs, and understand the impact of nutrition on various health conditions.
SEC-1	BBT21-109	English and Communication Skills	2	i. ii. iii. iv.	Understanding of phonics and accents. Gain listening skills Improve grammatically correct vocal and written English Effective expression of ideas, opinions and presentations

SEM-III

Course No. &	Title	Credits	Course Outcome
Description			
BBT 301 Core Course –Theory	Concepts in Microbiology	3	 i. Understand principle and genetic exchange mechanisms in bacteria ii. Classification, structure, reproduction and economic importance of unicellular eukaryotic microorganisms iii. Knowledge of bacterial and plant viruses iv. Principles of infection and pathogenicity of various pathogens v. Antimicrobial chemotherapy
BBT 302 Core Course –Theory	Biochemistry II	3	 i. Students will learn principles of thermodynamics and bioenergetics ii. They will gain detailed knowledge of classification, nomenclature and mechanism of action of enzymes iii. They will have learnt in detail the metabolic pathways for synthesis and breakdown of carbohydrates, lipids and nitrogen in the body iv. Bioenergetics and regulation of above pathways
BBT 303 Core Course –Theory	Principles & Techniques in Molecular Biology	3	 i. Students will know structure and properties of nucleotides; Watson and Crick's structure of DNA double helix; Structures and types of RNAs ii. Types and consequences of various mutations iii. Organizations of prokaryotic and eukaryotic genomes iv. Students will be acquainted with

			modern techniques for analysis of
			nucleic acids
BBT 304 Core Course –Theory	Immunology	3	 i. Students will learn innate and adaptive types of immunity ; know the concepts of humoral and cell mediated immune response ii. Structure of antibody, organs of immune system; Classes and subclasses iii. They will learn antigen presenting cells, major histocompatibility complex, B cell and T cell differentiation iv. Knowledge of immunological diseases and immunological techniques
BBT 305 Core Course-Practical	Practicals in Microbiology	3	 i. Students will gain skill for micrometry, characterization of bacteria ii. They will learn maintenance and revival of cultures iii. Isolation of bacteriophages, fungi and yeast iv. Learn antibiotic susceptibility assay
BBT 306 Core Course-Practical	Practicals in Biochemistry II	3	 i. Study of isolation and kinetics of enzymes activity ii. Gains skills for enzymatic preparation of glucose, malto-dextrin, invert sugars iii. Preparation of peptides using papain iv. Learn softening of various foods v. Study of digestive enzymes and metabolic pathways
BBT 307 Core Course-Practical	Practicals in Molecular Biology & Immunology	3	 i. Students will learn the safety, precision parameters, preparation of buffers and stock/working solutions ii. Learn isolation of DNA and RNA from prokaryotic and eukaryotic sources iii. Students will gain skills for quantitative and qualitative analysis of DNA and RNA preparations iv. Students will learn blood grouping, differential count of WBC and basic immunology techniques such as Widal, VDRL and Dot ELISA assays
BBT 308 Open Course III	Elective Patent & IPR, Nutrition	2	 i. The course focus on concepts of invention, creativity and intellectual property ii. Students will learn types of intellectual

			iii.	properties; patents, trademark, copyright, design and their protection They will learn filing of patent application, role of patent office/ attorney and patent infringement
BBT 309 General Course III	Elective Communication skills& Personality Development	2	i. ii. iii. iv.	Demonstrate effective verbal and non- verbal communication skills in various personal and professional contexts. Develop presentation skills, unforeseen situation handling Learn interpersonal communication skills Get insights in personality development and analyzing strengths and weaknesses and body language

SEM-IV

Course No. &	Title	Credits	Course Outcome
Description			
BBT 401 Core Course – Theory	Environmental Biotechnology	3	 i. Understand the basic concepts and principles of environmental biotechnology ii. Gain knowledge of ecosystem, biosphere, natural resources and environment iii. Concept of biodiversity and critical need for its conservation iv. Types and causes of pollution, soil erosion v. Applications of biotechnology for addressing environmental challenges
BBT 402 Core Course – Theory	Fundamentals in Molecular Biology	3	 i. Through this course students will learn the mechanism of DNA replication and repair in prokaryotic cells ii. They will learn types of RNA and their synthesis as well as processing in prokaryotic and eukaryotic cells iii. Students will understand the mechanism of synthesis of proteins and regulation of gene expression
BBT 403 Core Course –Theory	Developmental Biology	3	 i. The course aims to provide concepts in gametogenesis, meiosis and embryology ii. Have awareness of types and patterns of cleavages during embryo development iii. Know about developmental plasticity in embryo development iv. Patterning, abnormal development and teratogenesis
BBT 404 Core Course –Theory	Analytical Techniques	3	 i. Students will learn the principle and applications for analytical techniques ultrafiltration, centrifugation, MALDI-TOF, Chromatography, Magnetic Resonance etc. ii. Students will know various analytical techniques in biological research. iii. The course will enhance the employability of the candidates in Biotechnological, Pharmaceutical Industries and Analytical Laboratories

			and research institutes
			iv.
BBT 405 Core Course-Practical	Environmental Biotechnology Lab	3	 i. Study of ecosystems and analyzing water samples for its quality ii. Students will learn the techniques for analysis of noise level, oxygen levels from water, potable quality of water, extent of pollution in water, iii. Learn to estimate biomass from organisms iv. Study production of biogas
BBT 406 Core Course-Practical	Practicals in Molecular & Developmental Biology	3	 i. Students will gain the knowledge of isolation of nucleic acids (DNA and RNA) from prokaryotic and eukaryotic sources. ii. They will learn qualitative and quantitative analysis of nucleic acids iii. They will learn and observe the preparation of polytene chromosomes from chironomous larvae iv. They will study the dissection and chick embryo and observe various stages of chick embryo development v. Learn and study chick embryo whole mount preparation
BBT 407 Core Course-Practical	Analytical Techniques Lab	3	 i. After completion of the course students will be able to prepare demineralized water ii. They will learn to analyze and separate nucleotides , purine and pyrimidine bases using HPLC iii. Estimate molecules on lambda max basis iv. They will learn the principle, mode of operation and applications of analytical techniques such as membrane filtration, steripad filtration, polyacrylamide gel electrophoresis, flame photometry, spray dryer, dialysis and reverse osmosis.
BBT 408 Open Course IV	Elective Nanotechnology,Bio fertilizer Technology	2	 i. Students will gain understanding of basic principles of nanotechnology and various types of nanoparticles ii. They will learn characterization of nanoparticles using various techniques

			iii.	They will gain an overview of applications in medicine, biological detection, agriculture and environment
			i.	In Biofertilizer technology course the students will have technical knowledge of composition and types of soils.
			ii.	Use of microorganisms for composting and humus formation and nitrogen fixation
			iii.	They will understand the method of preparation liquid and carrier based combination of inoculants and their application.
			iv.	Understand the concept of biofertilizers and their role in sustainable agriculture.
			i.	The course is essential to strengthen student's familiarity with scientific publications
BBT 409 General Course IV	E 409 Course IV Elective Seminar & Journal Club	2	ii.	They will learn to read critically with scientific thinking and hypothesis construction
		_	iii. iv.	Develop skills in critical evaluation Improve written and oral communication skills with better understanding the research process

Course No. &	Title	Credits	Course Outcome
Description			
	501 —Theory Biostatistics		 i. Students will be acquainted with basic principles of statistics ii. They will learn the graphical
BBT 501			representation of data in various waysiii. They will learn concept of frequency, probability and various
Core Course – Theory		3	iv. They will be introduced to correlation, regression, analysis of variance, estimation of significance
			v. Students will learn application of spread sheets and statistical packages SPSS and PSPP
			i. Understand the role and importance of biochemical tests in diagnosis and monitoring the therapy of diseases
BRT 502	Clinical Biotechnology	3	ii. They will have the technical understanding of specimen collection and processing; analysis of blood and urine
Core Course – Theory			iii. They will have knowledge of liver function abnormalities and lipid profile analysis
			iv. Learn importance of acid, base and electrolyte balance
			v. They will be acquainted with pathophysiology of carbohydrates, lipids and proteins
			i. The course will provide knowledge of basic principle and techniques involved in recombinant DNA
BBT 503			ii. Students will gain technical conceptsof various vectors and its manipulation
Core Course – Theory	Recombinant DNA Technology	3	iii. They will learn cloning strategies, development of genomic/cDNA
			iv. They will have an overview of applications in agriculture, environment and medicine
BBT 504 Core Course – Theory	Food Biotechnology	3	i. Students will know the role of microorganisms in dairy and food industry

			ii. Le of iii. U in pr	earn the techniques for fermentation cheese, bread, wine. nderstand the role of biotechnology food industry, Preservation and rocessing of food
BBT 505 Core Course-Practical	Practicals in Clinical Biotechnology	3	i. La di ii. Es ke pr iii. La to fu iv. La	earn to make blood smear and take fferential count stimations of hemoglobin, glucose, etone bodies, urea creatinine and roteins earn principle and method of glucose lerance, liver function and kidney nction tests earn CSF and urine analysis
BBT 506 Core Course-Practical	Practicals in Recombinant DNA Technology	3	i. St m cc ar re ve ii. St ge Ez se	audents will learn the principle and ethodology of preparation of ompetent cells, isolation of plasmid ad transformation of plasmid DNA, striction digestion and ligation of ector DNA strudent knowledge of Manipulation of enes, Transfer techniques, spression systems and methods of election
BBT 507 Core Course-Practical	Practicals in Food Biotechnology	3	i. St bi Pr ii. Tl pr qu er iii. Tl pr	rudent will understand the role of otechnology in food industry, reservation and processing of food hey will learn the plate count of dairy roducts, determination of milk hality, water quality, presence of interic pathogens and food adultration hey will learn the method of cheese roduction
BBT 508 Open Course V	Elective Biotechnology for forensics OR Biodiversity ORInformation security	2	i. U bi fo ii. Le stu iii. U m se ar iv. W	nderstand the basic principles and otechnology methods used for resnsics earn methods for collection and orage of biological samples nderstand the chemical, icroscopic, molecular and rological methods of sample halysis Vill know court room testimony
		1	1. 11	ic brouversity course will help the

			ii. iii.	students to understand the importance of ecological balance and human well- being. They will have an overview of major biomes in the world Gain knowledge of biodiversity, its threats and methods for sustainable ecosystem
BBT 509 General Course V	Elective Innovative ideas in Biotechnology	2	i. ii. iii.	Students will think in terms of innovation and technology dvelopment Apply the understanding and knowledge of biotechnology to find solution for the local issues/problems Use the new skills and continue to independently learn more about the area of innovations,

SEM-VI

Course No. &	Title	Credits	Course Outcome
Description			
BBT 601 Core Course – Theory	Animal Biotechnology	3	 i. Gain knowledge of Biotechnology applications in animal and livestock welfare ii. They will learn the methods of animal cloning and development of transgenic animals for various applications iii. Students will learn the technique of Animal Tissue Culture and its importance in basic and advance research iv. Will understand the principle and methodologies for vaccine, monoclonal antibodies and therapeutic proteins v. Know the properties, types and applications of stem cells
BBT 602 Core Course – Theory	Bioprocess Technology & Quality Control	3	 i. Understand the basic principles and concepts of bioprocess technology ii. Will learn the production of biopharmaceuticals, biofuels, and industrial enzymes iii. They will know the design of fermenters and steps involved in downstream process iv. They will learn the parameters of quality control, packaging and product development process
BBT 603 Core Course – Theory	Plant Biotechnology	3	 i. Gain an overview of various types of plant tissue culture; their micropropagation and strategies ii. Use of molecular marker assisted techniques for germplasm, taxonomic and plantbreeding studies iii. Production of secondary metabolites, genetic engineering methods and applications
BBT 604 Core Course – Theory	Basics of Bioinformatics	3	 i. Gain an overview of the Bioinformatics discipline ii. Students will be introduced to biological databases and search engines iii. They will learn bibliographic and nucleotide sequence databases iv. Will gain knowledge of protein

			sequence databases, alignment and analysis v. Analysis of biological data and their interpretation by using software.
BBT 605 Core Course-Practical	Practicals in Animal Tissue Culture	3	 i. Learn the concept of sterility, aseptic techniques and GLP ii. Will learn preparation of media, reagents and cell handling as well as routine maintenance iii. Will gain hands on practice for cell counting, microplate seeding and cellular assays
BBT 606 Core Course-Practical	Practicals in Plant Tissue Culture	3	 i. Learn working in sterile environment ii. Will learn media preparation, micropropagation of monocot and dicot plants, organ and callus cultures iii. Will gain hands on training on microspore cultures and agrobacterium mediated transformation
BBT 607 Core Course-Practical	Exercises in Computer Applications & Bioinformatics	3	 i. Students will know resources and search engines of biological and bibliographic databases ii. Understand various nucleotide sequence databases, sequence alignment and analysis iii. Will know protein databases, analysis tools and their analysis
BBT 608 Open Course VI	Elective Entrepreneurship in Biotechnology Elective Business management in Biotechnology	2	 i. Students will have an overview of biotechnology industry ii. They will know about various agri, health and environment based industries iii. Understand the process of entrepreneurship development, production, project management, capital raising and role in Indian economy iv. Role of management, staff recruitment, motivation, leadership, packaging, advertising, pricing and start up process of biotechnology company v.
BBT 609 General Course VI	Scientific writing	2	i. Students will learn to select a topic of interest and write a review on available

	literature for the topic ii. The process will make the students understand technical ways of literature search, mining of relevant information and its analysis iii. Develop technical and scientific writing skills
--	--

SEM-II

Course	Course no	Title	Credits		Course Outcome
Core T	BBT21-201	Microbiology I	i. 3	i.	Understand principles and applications of various
				ii.	Learn structure, properties and taxonomy of bacteria
				iii.	Learn Bergey's manual of bacteriology
				1V.	patterns and bactericidal agents
Core T	BBT21-202	Biochemistry I	3	i.	Gain familiarity with protein chemistry
				ii.	Learn primary, secondary and tertiary structures of proteins and nucleic acids, role of minerals, vitamins in protein functions
				iii.	Mononucleotides and role of cAMP. Gain understanding of various analytical techniques used for study of biomolecules
Core T	BBT21-203	Cell Biology	3	i.	Understand evolution of cell, structure and types of cells
				ii.	Learn structure and function of various cell organelles
				iii.	Explore fluid mosaic model of cell membrane and its role; active and passive transport across it
				iv.	Knowledge of structure and function of cytoskeleton elements. Learn cell division, cell cycle, cell interactions, signaling and cell death.
Core T	BBT21-204	Microbiology I Lab	3	i.	Gain acquaintance with microbiology laboratory practices
				ii.	Get introduced to microscopy
				iii.	Techniques for pure culture, monochrome, gram and
				iv.	Understand growth curve properties, staining of capsule, spore, cell wall and granules of bacteria.

Core P	BBT21-205	Biochemistry I Lab	3	i.	Gain skills for isolation of
					proteins from biological
					samples
				11.	Estimation of proteins using
					colorimetric and ILC methods
				111.	Determination of pKa values,
				•	titration curve of amino acids
				1V.	Isolation and analysis of
				••	Vitamins and pigments
				v.	chromotography for isolation of
					natural dves
Core P	BBT21 206	Cell Biology Lab	3	i	Students will be able to identify
Corer	DD121-200	Cell Blology Lab	5	1.	prokaryotic and eukaryotic cells
					and sub-cellular organelles by
					microscopic examinations
				ii	Skill in observing mitosis and
					meiosis in onion root tip cells
				iii.	Learn enumeration of blood
					cells using hemocytometer
					chamber
AECC-2	BBT21-207	Mathematics for	2	i.	The Mathematics for Biologists
		Biologists-II			course equips students with the
					mathematical tools and concepts
					necessary to analyze and interpret
					biological phenomena.
				ii.	Upon completion of the course,
					students will be proficient in using
					mathematical techniques to model
					biological processes, such as
					population dynamics, genetics, and
					ecological interactions.
				111.	They will learn to apply calculus,
					statistics, and linear algebra to solve
					analysis and experimental design
CF -2	BBT21_208	Water Resource	2	i	Students will understand the
GE - 2	DD121-200	Conservation	2	1.	basic knowledge about water
					resources
				ii	Students will understand the
					basic process of hydrology and
					distinguish between potential
					and actual water resources
				iii.	Students will justify the need for
					water conservation and
					management
				iv.	Students will understand the
					concept of watershed
					management and its effect on
					land, water and ecosystem

					resources.
				v.	It will provide the necessary
					knowledge and skills required
					for managing water resources.
	BBT21-208	Biotechnology and		i.	The Biotechnology and Human
		Human Welfare			Welfare course explores the
					ways in which biotechnology
					contributes to improving human
					lives and well-being.
				ii.	Upon completing the course,
					students will understand how
					biotechnological advancements
					are harnessed to address various
					societal challenges, including
					healthcare, agriculture,
					environment, and more.
				iii.	They will learn about
					applications such as genetic
					engineering, pharmaceutical
					production, medical diagnostics,
					and sustainable agriculture
					practices
SEC-2	BBT21-209	Understanding Finance	2	i.	The Understanding Finance &
		& Its Management			Its Management course provides
					students with a comprehensive
					grasp of financial concepts and
					strategies for effective resource
					allocation and decision-making.
				ii.	Upon completion of the course,
					students will understand
					fundamental financial
					principles, including budgeting,
					investment, risk management,
					and financial analysis.
				iii.	They will learn to interpret
					financial statements, evaluate
					investment opportunities, and
					make informed financial
1					
					decisions in personal and

M.Sc. Medical Biotechnology 2018 Course

SEM-I

Course No. & Description	Title	Credits	Course Outcome
MBT&MedBT 101	Microbiology	3	i. This course will help students to acquire skills and competency in microbiological laboratory

Core Course-			practices applicable to microbiological
Theory			research or clinical methods, including
			accurately reporting observations and
			analysis, applications of Microorganisms in
			various fields.
			11. Understand principle and genetic exchange
			iii Classification structure reproduction and
			and economic importance of unicellular
			eukarvotic microorganisms
			iv Knowledge of bacterial and plant viruses
			v. Principles of infection and pathogenicity of
			various pathogens
			vi. Antimicrobial chemotherapy
			i. Students will be imparted knowledge about
			structure and function of different
			biomolecules (proteins, lipids, nucleic acids,
			and carbohydrates), synthesis and metabolism
			of biomolecules.
MBT&MedBT 102			11. Students will learn principles of thermodynamics and bioenergeties
Core Course –	Biochemistry	3	iii They will gain detailed knowledge of
Theory	Dioenennistry	5	classification nomenclature and mechanism
Пеогу			of action of enzymes
			iv. They will have learnt in detail the metabolic
			pathways for synthesis and breakdown of
			carbohydrates, lipids and nitrogen in the body
			v. Bioenergetics and regulation of above
			pathways.
			i. Students will be able to identify
			prokaryotic and eukaryotic cells and sub-
			enular organeties by microscopic
			ii Skill in observing mitosis and meiosis in
			onion root tip cells
MRT&ModRT 103	Cell &		iii. Learn enumeration of blood cells using
Core Course	Developmental	3	hemocytometer chamber
Theory	Biology	5	iv. The course aims to provide concepts in
Пеогу	Diology		gametogenesis, meiosis and embryology
			v. Have awareness of types and patterns of
			cleavages during embryo development
			vi. Know about developmental plasticity in
			vii Patterning abnormal development and
			teratogenesis
			i. Gain knowledge of Mendelian and Non-
MBT&MedBT 104			Mendelian principles of inheritance
Core Course –	Genetics	3	ii. Learn structure of chromosomes, its
Theory			segregation during cell division and
			generation of numerical and structural

MBT&MedBT 105 Core Course – Theory	Molecular Biology	3	 chromosomal abnormalities iii. Techniques for genetic analysis iv. Learn molecular basis of sex determination and associated characteristics v. Familiarity with applied and evolutionary genetics. i. Students will know structure and properties of nucleotides; Watson and Crick's structure of DNA double helix; Structures and types of RNAs ii. Types and consequences of various mutations iii. Organizations of prokaryotic and eukaryotic genomes iv. Students will be acquainted with modern techniques for analysis of nucleic acids
MBT&MedBT 106 Core Course – Practical	Biochemistry & Molecular Biology Lab	4	 i. Students will have understanding of good laboratory practices, safe handling of equipment's, safety, accuracy and reliability ii. Preparations of buffers and solutions iii. Quantitative estimations of biomolecules and determination of lambda max iv. Learn thin layer chromatography v. Students will learn the safety, precision parameters, preparation of buffers and stock/working solutions vi. Learn isolation of DNA and RNA from prokaryotic and eukaryotic sources vii. Students will gain skills for quantitative and qualitative analysis of DNA and RNA
MBT&MedBT 107 Core Course – Practical	Cell Biology & Genetics Lab	4	 i. Students will be able to identify prokaryotic and eukaryotic cells and subcellular organelles by microscopic examinations ii. Skill in observing mitosis and meiosis in onion root tip cells iii. Learn enumeration of blood cells using hemocytometer chamber iv. Will have experienced staining and observing chromosomes from specimen samples v. Study for effect of mutagenic agents on seeds vi. Isolation, cultivation and study of first eukaryotic multicellular organism (C. elegance) as well as drosophila.
MBT&MedBT 108 Core Course – Practical	Microbiology Lab	2	 i. Gain acquaintance with microbiology laboratory practices ii. Get introduced to microscopy iii. Techniques for pure culture, monochrome,

		gram and negative staining
	iv.	Understand growth curve properties,
		staining of capsule, spore, cell wall and
		granules of bacteria.

SEM-II

Course No. &	Title	Credits	Course Outcome
Description			
MBT&MedBT 201 Core Course –Theory	Genetic Engineering	3	 i. The course will provide knowledge of basic principle and techniques involved in recombinant DNA technology ii. Students will gain technical concepts of various vectors and its manipulation iii. They will learn cloning strategies, development of genomic/cDNA libraries and expression of genes iv. They will have an overview of applications in agriculture, environment and medicine.
MBT&MedBT 202 Core Course – Theory	Analytical Biotechnology	3	 i. Students will learn the principle and applications for analytical techniques ultrafiltration, centrifugation, MALDI-TOF, Chromatography, Magnetic Resonance etc. ii. Students will know various analytical techniques in biological research. iii. The course will enhance the employability of the candidates in Biotechnological, Pharmaceutical Industries and Analytical Laboratories and research institutes.
MBT&MedBT 203 Core Course –Theory	Immunology	3	 i. Students will learn innate and adaptive types of immunity; know the concepts of humoral and cell mediated immune response ii. Structure of antibody, organs of immune system; Classes and subclasses iii. They will learn antigen presenting cells, major histocompatibility complex, B cell and T cell differentiation iv. Knowledge of immunological diseases and immunological techniques
MBT&MedBT 204 Core Course – Theory	Genomics & Proteomics	3	 i. Structure and organization of genomics and proteomics. ii. Students will be able to analyze, interpret and study biological data (sequence, structure, etc) stored in various databases available on internet. iii. The students will have an introduction to current methodologies and trends in the field of proteomics.
MBT&MedBT 205 Core Course - Theory	Nanobiotechnology	2	i. Students will learn to apply principles of engineering, biology, and chemistry to manipulate and engineer nanoscale materials for applications in medicine, diagnostics,

			enviror ii. Studer and ch their in and d address	nmental monitoring, and more. hts will become proficient in designing aracterizing nanomaterials, exploring nteractions with biological systems, eveloping innovative solutions to s complex challenges.
MedBT 206 Core Course -Theory	Human Physiology	3	i. To pro system of basic	vide a course of study in mammalian, s physiology, building on knowledge c physiological principles
MBT& Med BT 207 Core Course – Practical	Genetic Engineering and Genomics Lab	4	 ii. Learnin technic in reco iii. Applica techniq biology conduc manipu 	ng outcomes of this course are eal know-how on versatile techniques mbinant DNA technology ation of genetic engineering jues in basic and applied experimental y and proficiency in designing and eting experiments involving genetic ilation.
MBT&MedBT 208 Core Course – Practical	Analytical Techniques and Proteomics Lab	4	 After c get han techniq signific the Pharma Labora The stu and a applica 	completion of the course students will and s on training on various analytical pues in biological research. This cantly enhances the employability of candidates in Biotechnological, accutical Industries and Analytical tories and research institutes. Idents should also obtain an overview awareness of typical proteomics tions from lab work.
MBT&MedBT 209 Core Course - Practical	Immunology &Nanobiotechnolog y Lab	4	i. The co knowle various cell typ Synthe nanopa	urse will provide technical knowledge edge of immune system deals with s pathogens, different processes and pes involved in autoimmune disease. sis and characterization of articles
MBT&MedBT 210 Elective Course I	Elective Bioentrepreneurship/ IPR I	2	 i. Upon a Rights solid u and propert ii. They intellect copyrig along protect 	completing the Intellectual Property (IPR) course, students will develop a nderstanding of the legal frameworks principles surrounding intellectual ty. will learn about various forms of ctual property such as patents, ghts, trademarks, and trade secrets, with the processes for obtaining and ing them.

SEM-III

Course No. &	Title	Credits	Course Outcome
Description			
MedBT 301 Core Course –Theory	Animal Tissue Culture & Stem Cell Biology	3	 i. Theoretical knowledge of various topics as per the syllabus including basic cell culture techniques; Primary culture, secondary culture; Continuous cell lines; Suspension cultures; Transfection, pluripotency, stem cells. ii. Concept building in animal reproductive biology, Animal genomics and DNA forensics: Embryo transfer; Micromanipulation of animal embryos; Transgenic animal technology
MedBT 302 Core Course –Theory	Medical Biochemistry & Drug Discovery	3	 i. Upon completing the Medical Biochemistry & Drug Discovery course, students will acquire a comprehensive understanding of the biochemical processes that underlie human health and disease. ii. They will learn to apply this knowledge to the field of drug discovery, exploring how molecules interact with biological systems to develop therapeutic interventions. iii. Students will become proficient in analyzing biochemical pathways, studying the mechanisms of drug action, and evaluating the efficacy and safety of potential drugs
MedBT 303 Core Course –Theory	Infectious Diseases	3	 i. Studying Infectious Diseases offers students a comprehensive understanding of the causes, transmission, and impact of various infections on human health. ii. Upon completion of this course, students will be equipped to identify different types of infectious agents, including bacteria, viruses, fungi, and parasites. iii. They will gain insights into the epidemiology and factors influencing disease spread. Additionally, students will learn about the immune response to infections, diagnostic methods, and principles of infection control

			i	The course in Pharmaceutical
MedBT 304 Core Course –Theory	Pharmaceutical Biotechnology & Molecular Diagnostics	3	ii. iii.	Biotechnology & Molecular Diagnostics offers students a comprehensive understanding of the intersection between biotechnology and pharmaceuticals, with a focus on molecular diagnostics. Upon completion of the course, students will possess the knowledge and skills to develop and apply biotechnological tools for drug development and advanced diagnostic techniques. They will learn about the principles of recombinant DNA technology, gene expression, and protein production.
MBT&MedBT 305 Core Course-Theory	Biostatistics	2	i. ii.	This course will help students' tools of biostatics in interpretation of biological data. Students will be able to characterize data and understand different sampling methods.
MBT&MedBT 306 Core Course-Theory	Research Methodology	2	i. ii.	Course on research methodology will provide knowledge base as to how to design a research project and about different aspects involved in carrying out research. Students will learn the methods of sampling, reviewing a research objective, conducting experiments and interpretation of results.
MedBT 307 Core Course- Practical	ATC & Pharma Biotech Lab	4	i. ii.	The course in Animal Tissue Culture & Pharma Biotech Lab provides students with practical expertise in animal cell culture techniques and their applications in pharmaceutical and biotechnology research. Upon completion of the course, students will be adept at culturing and manipulating animal cells in controlled environments to produce biologically relevant models for drug testing, bioprocessing, and research. They will gain insights into cell behavior, growth factors, and cell line maintenance.
MedBT 308 Core Course- Practical	Infectious Diseases & Biostatistics Lab	4	i. ii.	Students will learn about the mechanisms of infection, host-pathogen interactions, and the body's immune responses. The course aims to equip learners with the knowledge to identify, diagnose, and

			iii.	 manage infectious diseases, as well as strategies for disease prevention and control. This course will help students' tools of biostatics in interpretation of biological data. Students will be able to characterize data and understand different sampling methods.
MedBT 309 Core Course- Practical	Medical Biochemistry & Drug Discovery Lab	2	i. ii.	The Medical Biochemistry & Drug Discovery Lab course offers students practical skills in applying biochemistry principles to drug discovery processes. Upon completion of the course, students will be proficient in performing laboratory techniques related to the identification, design, and testing of potential therapeutic agents.
MBT&MedBT 310 Elective Course II	Biomedical Waste Management/ Drug designing/ IPR II	2	i. ii. iii. iv.	The Biomedical Waste Management course educates students about the proper handling, disposal, and management of waste generated in healthcare and biomedical facilities. Upon completion of the course, students will understand the potential risks associated with biomedical waste and the importance of adhering to regulations and protocols to ensure public health and environmental safety. Upon completing the Intellectual Property Rights (IPR) course, students will develop a solid understanding of the legal frameworks and principles surrounding intellectual property. They will learn about various forms of intellectual property such as patents, copyrights, trademarks, and trade secrets, along with the processes for obtaining and protecting them.

Course No. &	Title	Credits	Course Outcome
Description			
MBT&MedBT 401 Core Course	Research Project	20	 i. This course will include allotment of an individual research work to each student to be carried out in fourth semester. ii. This will not only enhance knowledge base of students but also provide them exposure as to how to conduct and carry out a research based task. iii. Students will also learn how to compile and interpret results.

M.Sc. Biotechnology 2018 Course

SEM-I

Course No. &	Title	Credits	Course Outcome
Description			
MBT&MedBT 101 Core Course-Theory	Microbiology	3	 This course will help students to acquire skills and competency in microbiological laboratory practices applicable to microbiological research or clinical methods, including accurately reporting observations and analysis, applications of Microorganisms in various fields.
MBT&MedBT 102 Core Course –Theory	Biochemistry	3	i. Students will be imparted knowledge about structure and function of different biomolecules (proteins, lipids, nucleic acids, and carbohydrates), synthesis and metabolism of biomolecules.
MBT&MedBT 103 Core Course –Theory	Cell & Developmental Biology	3	i. To gain the knowledge of living cells such as prokaryotic and eukaryotic cells, formation of cells, cell adhesion and cellular signaling, role of cell division and its regulation on diseases like cancer
MBT&MedBT 104 Core Course –Theory	Genetics	3	 i. Understand the concept of genes and their behavior. ii. Studying Genetics provides students with a comprehensive understanding of heredity, inheritance patterns, and the role of genes in shaping traits and characteristics in organisms.
MBT&MedBT 105 Core Course –Theory	Molecular Biology	3	i. Students will gain indepth knowledge of DNA, RNA, Central Dogma, Transcription and Translation
MBT&MedBT 106 Core Course – Practical	Biochemistry & Molecular Biology Lab	4	 i. The "Biochemistry & Molecular Biology Lab" course provides hands-on experience in the practical applications of biochemistry and molecular biology principles. ii. Students will be imparted knowledge about structure and function of different biomolecules. iii. Students will engage in laboratory techniques to analyze biomolecules, study enzyme kinetics, perform DNA and RNA manipulations, and explore protein structure-function relationships.
MBT&MedBT 107 Core Course – Practical	Cell Biology & Genetics Lab	4	iv. The "Cell Biology & Genetics Lab" course offers a practical exploration of fundamental concepts in cell biology and genetics.

			v. Through laboratory exercises, students will gain hands-on experience in techniques such as cell culture, microscopy, DNA extraction, and genetic
			 analysis. vi. By studying cellular structures, processes, and genetic inheritance patterns, participants will develop a comprehensive understanding of how cells function and how genetic information is transmitted.
MBT&MedBT 108 Core Course – Practical	Microbiology Lab	2	 This course will help students to acquire skills and competency in microbiological laboratory practices applicable to microbiological research or clinical methods, including accurately reporting observations and analysis, applications of Microorganisms in various fields.

SEM-II

Course No. &	Title	Credits	Course Outcome
Description			
MBT&MedBT 201 Core Course –Theory	Genetic Engineering	3	 Learning outcomes of this course are technical know-how on versatile techniques in recombinant DNA technology, application of genetic engineering techniques in basic and applied experimental biology and proficiency in designing and conducting experiments involving genetic manipulation.
MBT&MedBT 202 Core Course –Theory	Analytical Biotechnology	3	 i. After completion of the course students will get hands on training on various analytical techniques in biological research. ii. This significantly enhances the employability of the candidates in Biotechnological, Pharmaceutical Industries and Analytical Laboratories and research institutes.
MBT&MedBT 203 Core Course – Theory	Immunology	3	i. The course will provide technical knowledge knowledge of immune system deals with various pathogens, different processes and cell types involved in autoimmune disease.
MBT&MedBT 204 Core Course –Theory	Genomics & Proteomics	3	 i. Structure and organization of genomics and proteomics. Students will be able to analyze, interpret and study biological data (sequence, structure, etc) stored in various databases available on internet. ii. The students will have an introduction to current methodologies and trends in the field of proteomics
MBT&MedBT 205 Core Course - Theory	Nanobiotechnology	2	 i. Students will learn to apply principles of engineering, biology, and chemistry to manipulate and engineer nanoscale materials for applications in medicine, diagnostics, environmental monitoring, and more. ii. Students will become proficient in designing and characterizing nanomaterials, exploring their interactions with biological systems, and developing innovative solutions to address complex challenges.
MBT 206	Animal Tissue Culture	2	i. Theoretical knowledge of various topics as per the syllabus including

Core Course -Theory			ii.	basic cell culture techniques; Primary culture, secondary culture; Continuous cell lines; Suspension cultures; Transfection, pleuripotency, stem cells. Concept building in animal reproductive biology, Animal genomics and DNA forensics: Embryo transfer; Micromanipulation of animal embryos; Transgenic animal technology
MBT&MedBT 207 Core Course –Practical	Genetic Engineering and Genomics Lab	4	i.	Learning outcomes of this course are technical know-how on versatile techniques in recombinant DNA technology, application of genetic engineering techniques in basic and applied experimental biology and proficiency in designing and conducting experiments involving genetic manipulation.
MBT&MedBT 208 Core Course –Practical	Analytical Techniques and Proteomics Lab	4	i. ii. iii.	After completion of the course students will get hands on training on various analytical techniques in biological research. This significantly enhances the employability of the candidates in Biotechnological, Pharmaceutical Industries and Analytical Laboratories and research institutes. The students should also obtain an overview and awareness of typical proteomics applications from lab work.
MBT&MedBT 209 Core Course - Practical	Immunology & Nanotechnology Lab	4	i.	The course will provide technical knowledge knowledge of immune system deals with various pathogens, different processes and cell types involved in autoimmune disease. Synthesis and characterization of nanomaterials
MBT&MedBT 210 Elective Course I	Bioentrepreneurship/ IPR I	2	i. ii.	Upon completing the Intellectual Property Rights (IPR) course, students will develop a solid understanding of the legal frameworks and principles surrounding intellectual property. They will learn about various forms of intellectual property such as patents, copyrights, trademarks, and trade secrets, along with the processes for obtaining and protecting them.

SEM-III

Course No. &	Title	Credits	Course Outcome
Description			
MBT 301 Core Course – Theory	Environmental Biotechnology	3	i. Learning outcome of Environment Biotechnology is to gain the knowledge of biodiversity, bioremediation, pollution.
MBT 302 Core Course – Theory	Plant Biotechnology	3	i. Gain knowledge of Crop development, Callus culture, Biotechnological applications of plants
MBT 303 Core Course – Theory	Microbial Technology	3	i. The course will provide technical knowledge applications of Microrganisms in bioprocess industry, fermentation, downstream processing
MBT 304 Core Course – Theory	Food Biotechnology	2	i. Student will understand the role of biotechnology in food industry, Preservation and processing of food
MBT&MedBT 305 Core Course-Theory	Biostatistics	2	 i. This course will help students' tools of biostatics in interpretation of biological data. ii. Students will be able to characterize data and understand different sampling methods.
MBT&MedBT 306 Core Course-Theory	Research Methodology	2	 i. Course on research methodology will provide knowledge base as to how to design a research project and about different aspects involved in carrying out research. ii. Students will learn the methods of sampling, reviewing a research objective, conducting experiments and interpretation of results.
MBT 307 Core Course-Practical	Environment &Plant Biotech Lab	4	 i. Learning outcome of Environment Biotechnology is to gain the knowledge of biodiversity, bioremediation, pollution. ii. Gain knowledge of Crop development, Callus culture, Biotechnological applications of plants
MBT 308 Core Course-Practical	Microbial & Food Biotech Lab	4	 i. The course will provide technical knowledge applications of Microrganisms in bioprocess industry, fermentation, downstream processing ii. Student will understand the role of biotechnology in food industry, Preservation and processing of food

MBT 309 Core Course-Practical	Biostatistics Lab	2	i. ii.	This course will help students' tools of biostatics in interpretation of biological data. Students will be able to characterize data and understand different sampling methods.
MBT&MedBT 310 Elective Course II	Biomedical Waste Management/ Drug designing/ IPR II	2	i. ii. iii. iv.	The Biomedical Waste Management course educates students about the proper handling, disposal, and management of waste generated in healthcare and biomedical facilities. Upon completion of the course, students will understand the potential risks associated with biomedical waste and the importance of adhering to regulations and protocols to ensure public health and environmental safety. Upon completing the Intellectual Property Rights (IPR) course, students will develop a solid understanding of the legal frameworks and principles surrounding intellectual property. They will learn about various forms of intellectual property such as patents, copyrights, trademarks, and trade secrets, along with the processes for obtaining and protecting them.

Course No. &	Title	Credits	Course Outcome
Description			
MBT&MedBT 401 Core Course	Research Project	20	 i. This course will include allotment of an individual research work to each student to be carried out in fourth semester. ii. This will not only enhance knowledge base of students but also provide them exposure as to how to conduct and carry out a research-based task. iii. Students will also learn how to compile and interpret results.

M.Sc. Bioinformatics 2019 Course

SEMESTER I

Course No. &	Title	Credits	Course Outcome
Description			
MBI 101 Basic Course-Theory	Cell Biology (C)	2	 i. To gain the knowledge of living cells such as prokaryotic and eukaryotic cells, formation of cells, cell adhesion and cellular signaling, role of cell division and its regulation on diseases like cancer. ii. Understand evolution of cell, structure and types of cells iii. Learn structure and function of various cell organelles iv. Explore fluid mosaic model of cell membrane and its role; active and passive transport across it v. Knowledge of structure and function of cytoskeleton elements vi. Learn cell division, cell cycle, cell interactions, signaling and cell death.
MBI 102 Basic Course – Theory	Biochemistry (C)	2	 Students will be imparted knowledge about structure and function of different biomolecules (proteins, lipids, nucleic acids, and

Sem-IV

				carbohydrates), synthesis and metabolism of
				biomolecules.
			ii.	Gain familiarity with protein chemistry
			iii.	Learn primary, secondary and tertiary structures
				of proteins and nucleic acids, role of minerals,
				vitamins in protein functions
			iv.	Mononucleotides and role of cAMP
			v.	Gain understanding of various analytical
				techniques used for study of biomolecules
			i.	They may be employed as statisticians,
				scientific programmers, or in areas of bio-
				science where training in quantitative
MBI 103	Biomathematics	2		techniques is needed.
Basic Course – Theory	(C)	2	ii.	Further, they are equipped to pursue graduate
				studies in theoretical biology, physiology,
				biostatistics, statistics, and areas of applied
				mathematics.
			i.	The subject and its relation with the other
				sciences, restate the principal concepts about
MRI 104				biostatistics.
Basic Course _Theory	Biostatistics (C)	2	ii.	Collect data relating to variable/variables which
Dasie Course – Theory				will be examined and calculate descriptive
				statistics from these data. Identification of data
				relating to variable/variables.
			i.	Understanding of Basics: Gain a fundamental
				understanding of programming concepts,
				including variables, data types, operators, and
				control structures in the C programming
				language.
	C Programming			
MBI 105	and Data structure	3	11.	Problem-Solving Skills: Develop the ability to
Basic Course – Theory	(C)			analyze problems and design algorithms to solve
				them using C programming techniques.
			;;;	Drogramming Proficionay: Acquira proficionay
			111.	in writing compiling and dobugging C
				m writing, comprising, and debugging C
				tasks
			i	i Knowledge and Awareness of the Basic
MBI 106	Biological	2	1.	Principles and Concents of Riology Computer
Basic Course – Theory	Informatics (C)	<u></u>		Science and Mathematics
				service and manentaneo.

			ii	Existing Software Effectively to Extract
				Information from Large Databases and to Use
				This Information in Computer Modeling
			:	DBMC: Designs COL superior to add date to the
			1.	DBMS: Designs SQL queries to add data to the
				database, edit existing data, and to delete data
				from the database. Declares and enforces
				integrity constraints on a database.
			ii.	Understands and applies indexing mechanisms
				in databases. Will be able to describe and
MRI 107	DBMS &			develop Relational Algebra and Relational
NIDI IV/ Pagia Course Theory	MongoDP (C)	3		Calculus queries.
Basic Course – Theory	MoligoDB (C)		iii.	MongoDB: The Easiest Way to Deploy,
				Operate, and Scale MongoDB in the Cloud in
				Just a Few Clicks. Create Deployments in
				Minutes w/ MongoDB Atlas. Speeding
				Progress. Reducing TCO. Streamlines
				Operations. Types: Avail. on AWS. GCP.
				Azure, Zero-downtime migration.
			i	Write Perl scripts to perform text processing and
				data manipulation tasks
			ii	Apply regular expressions effectively for
				nattern matching and substitution
			;;;	Litiliza modulos from CDAN to solve verious
			111.	offize modules from CFAN to solve various
			•	programming chanenges.
			1V.	Develop scripts for system administration and
				automation.
			v.	Create basic dynamic web content using Perl's
				CGI capabilities (if covered).
	PERL		vi.	Understand and implement basic programming
MBI 108	Programming /			concepts in Perl.
Elective Course -	HTML	2	vii.	Construct structured web pages using HTML
Theory	Programming			elements for headings, paragraphs, lists, etc.
	Tiogramming		viii.	Create hyperlinks to navigate between web
				pages and external resources.
			ix.	Apply semantic HTML elements for improved
				accessibility and search engine optimization.
			х.	Embed images, audio, video, and other media
				using appropriate HTML tags.
			xi.	Understand the basics of web forms and input
				elements.
			:	
			XII.	Recognize the role of HINL in we
			XII.	development and its integration with CSS and

			xiii.	Design and develop simple web pages using
MBI 109 Basic Course –Practical	Cell Biology and Biochemistry Lab (C)	2	i. ii. iii. iv. v. vi. vii. vii. viii.	Hands on practical training students will be able to identify prokaryotic and eukaryotic cells and sub-cellular organelles by microscopic examinations Skill in observing mitosis and meiosis in onion root tip cells Learn enumeration of blood cells using hemocytometer chamber. Gain skills for isolation of proteins from biological samples Estimation of proteins using colorimetric and TLC methods Determination of pKa values, titration curve of amino acids Isolation and analysis of vitamins and pigments Learn ion exchange chromatography for isolation of natural dyes
MBI 110 Basic Course –Practical	C Programming and Data Structure Lab (C)	2	i. ii.	Hands on practical training Programming Proficiency: Acquire proficiency in writing, compiling, and debugging C programs to implement simple and complex tasks.
MBI 111 Basic Course –Practical	Biological Informatics Lab (C)	2	i. ii. iii.	Hands on practical training "Knowledge and Awareness of the Basic Principles and Concepts of Biology, Computer Science and Mathematics. Existing Software Effectively to Extract Information from Large Databases and to Use This Information in Computer Modeling
MBI 112 Basic Course –Practical	DBMS & MongoDB lab (C)	2	i. ii. iii.	Hands on practical training DBMS: Designs SQL queries to add data to the database, edit existing data, and to delete data from the database. Declares and enforces integrity constraints on a database. Understands and applies indexing mechanisms in databases. Will be able to describe and develop Relational Algebra and Relational Calculus queries. MongoDB: The Easiest Way to Deploy, Operate, and Scale <i>MongoDB</i> in the Cloud in Just a Few Clicks. Create Deployments in Minutes w/ <i>MongoDB</i> Atlas. Speeding

				Progress. Reducing TCO. Streamlines
				Operations. Types: Avail. on AWS, GCP,
				Azure, Zero-downtime migration.
			i.	Hands on practical training
			ii.	Write Perl scripts to perform text processing and
				data manipulation tasks.
			iii.	Apply regular expressions effectively for
				pattern matching and substitution.
			iv.	Utilize modules from CPAN to solve various
				programming challenges.
			v.	Develop scripts for system administration and
	PERL			automation.
			vi.	Create basic dynamic web content using Perl's
			vii.	CGI capabilities (if covered).
				Understand and implement basic programming
MRI 113				concepts in Perl.
Elective Course -	Programming Lab	2	viii.	Construct structured web pages using HTML
Practical	/HTML Programming Lab	-		elements for headings, paragraphs, lists, etc.
			ix.	Create hyperlinks to navigate between web
				pages and external resources.
			х.	Apply semantic HTML elements for improved
				accessibility and search engine optimization.
			X1.	Embed images, audio, video, and other media using appropriate HTML tags
			xii.	Understand the basics of web forms and input
				elements.
			xiii.	Recognize the role of HTML in web
				development and its integration with CSS and
				JavaScript.
			xiv.	Design and develop simple web pages using HTML.

SEMESTER II

Course No. &	Title	Credits	Course Outcome
Description			
MBI 201 Core Course –Theory	Statistical Analysis System (SAS) (C)	2	 i. Creating new knowledge (Cognitive) ii. Developing feelings and emotions (Affective) iii. Enhancing physical and manual skills (Psychomotor) iv. Learning objectives can also be scaffolded so that they continue to push student learning to new levels in any of these three categories.
MBI 202 Core Course – Theory	R and Data Analytics (C)	3	 i. Master the use of the R and RStudio interactive environment. ii. Expand R by installing R packages. iii. Explore and understand how to use the R documentation. iv. Read Structured Data into R from various sources. v. Understand the different data types in R. vi. Understand the different data structures in R. vii. Proactivity & Anticipating Needs: viii. Mitigating Risk & Fraud: ix. Delivering Relevant Products: x. Personalization & Service: xi. Optimizing & Improving the Customer Experience.
MBI 203 Core Course –Theory	JAVA and BioJAVA Programming (C)	3	 i. On completion of the course the student should be able to: Use an integrated development environment to write, compile, run, and test simple object-oriented Java programs. ii. Read and make elementary modifications to Java programs that solve real-world problems.
MBI 204 Core Course – Theory	Science of Omics (C)	3	 i. Students will be able to critically discuss and solve problems relating to: ii. The ways in which investigations of the four 'omics' realms (genome, transcriptome,

				proteome and metabolome) are tackled analytically;
			iii.	The statistical approaches and workflow practices involved in genomics and in a range of transcriptomic approaches;
			iv.	The ways in which protein functions can be understood in terms of their structures, and the relative advantages of different analytical approaches in protein structure determination;
			v.	The relationship between the proteome and other 'omics' domains, and the ways in which the proteome can be investigated using a variety of technological approaches;
			vi.	The source and variety of components of the metabolome and of their relationship with entities in the other 'omics' domains, and the ways in which the metabolome can be investigated using a variety of technological and statistical approaches;
			vii.	The ways in which biological systems can be understood at a systems or network level, and the ways in which models can be constructed and analyses performed to draw biological inferences about the interactions between different parts of a network.
			viii.	Use computerscreativelyto manipulate omics-leveldatasets andprotein structure files;
			ix.	Use computer programs to execute a variety of planned analyses in several areas relating to omics domains and to protein structure;
			x.	Critically evaluate and synthesize the results of omics-level analyses to draw biological inferences
MBI 205 Core Course - Theory	Proteomics (C)	2	i.	The students will have an introduction to current methodologies and trends in the field of proteomics. The students should also obtain an overview and awareness of typical

		I		proteomics applications both from lectures
				and an introduction to protoomics lab work
				and an introduction to proteonnes lab work.
			ii.	After completed course the student should be able to describe and discuss the possibilities and advantages, and the complexity and drawbacks of various proteomics technologies compare traditional methods with emerging technologies. The student should be able to suggest suitable approaches for specified applications and motivate the choice speculate and argue about the future of proteomics technologies. With the acquired knowledge, the students should be able participate in scientific discussions regarding proteomics technologies critically evaluate scientific results.
MBI 206 Core Course -Theory	Molecular Biology	2	i. ii. iii. iv.	Students will know structure and properties of nucleotides; Watson and Crick's structure of DNA double helix; Structures and types of RNAs Types and consequences of various mutations Organizations of prokaryotic and eukaryotic genomes Students will be acquainted with modern techniques for analysis of nucleic acids
MBI 207 Core Course -Theory	Recombinant DNA Technology	2	i. ii. iii. iv.	Learning outcomes of this course are technical know-how on versatile techniques in recombinant DNA technology, application of genetic engineering techniques in basic and applied experimental biology and proficiency in designing and conducting experiments involving genetic manipulation. The course will provide knowledge of basic principle and techniques involved in recombinant DNA technology Students will gain technical concepts of various vectors and its manipulation. They will learn cloning strategies, development of genomic/cDNA libraries and expression of genes

			V.	They will have an overview of applications
				in agriculture, environment and medicine.
				Students loom the basics of methometical
			1.	students learn the basics of mathematical
				modeling and computer biomolecular
				systems, dynamics and simulation of selected
				regulatory processes using the methods of
				mechanic and molecular dynamics, Monte-
				Carlo methods, molecular models, and the
MBI 208	Structural Biology			basics of systems theory.
Core Course-Theory	and Molecular	3	ii.	Students become familiar with well-known
core course meory	Modeling			and popular molecular modeling and design
				packages as well as the virtual reality
				technology.
			iii.	The lecture and exercises prepare students for
				independent modeling of biomolecular
				systems and designing of enzyme inhibitors
				– potential drugs.
			i.	Hands on practical training
			ii.	. Creating new knowledge (Cognitive)
			iii.	Developing feelings and emotions
				(Affective)
			iv.	Enhancing physical and manual skills
				(Psychomotor)
			v.	Learning objectives can also be scaffolded so
				that they continue to push student learning to
				new levels in any of these three categories.
			vi.	Master the use of the R and RStudio
				interactive environment.
MBI 209	SAS and Data	2	vii.	Expand R by installing R packages.
Core Course - Practical	Analytics lab (C)	2	viii.	Explore and understand how to use the R
				documentation.
			ix.	Read Structured Data into R from various
				sources.
			x.	Understand the different data types in R.
			xi.	Understand the different data structures in R.
			xii.	Proactivity & Anticipating Needs:
			xiii.	Mitigating Risk & Fraud:
			xiv.	Delivering Relevant Products:
			XV.	Personalization & Service:
			xvi.	Optimizing & Improving the Customer
				Experience.

			i. ;;	Hands on practical training
MBI 210 Core Course - Practical	JAVA and BioJAVA Programming lab (C)	2	i.	should be able to: Use an integrated development environment to write, compile, run, and test simple object-oriented Java programs. Read and make elementary modifications to Java programs that solve real-world problems.
			ii.	The ways in which investigations of the four
				'omics' realms (genome, transcriptome, proteome and metabolome) are tackled analytically;
MBI 211 Omio Core Course - Practical (C)	Omics Analysis Lab (C)	2	iii.	The statistical approaches and workflow practices involved in genomics and in a range of transcriptomic approaches;
			iv.	The ways in which protein functions can be understood in terms of their structures, and the relative advantages of different analytical approaches in protein structure determination;
			v.	The relationship between the proteome and other 'omics' domains, and the ways in which the proteome can be investigated using a variety of technological approaches;
			vi.	The source and variety of components of the metabolome and of their relationship with entities in the other 'omics' domains, and the ways in which the metabolome can be investigated using a variety of technological and statistical approaches;
			vii.	The ways in which biological systems can be understood at a systems or network level, and the ways in which models can be constructed and analyses performed to draw biological inferences about the interactions between different parts of a network.
			viii.	Use computers creatively to manipulate omics-level datasets and protein structure files;

			ix. x.	Use computer programs to execute a variety of planned analyses in several areas relating to omics domains and to protein structure; Critically evaluate and synthesize the results of omics-level analyses to draw biological inferences
MBI 212 Core Course - Practical	Molecular Biology and Recombinant DNA Technology lab	2	i. ii. iii. iv. v.	Students will learn the principle and methodology of preparation of competent cells, isolation of plasmid and transformation of plasmid DNA, restriction digestion and ligation of vector DNA Student knowledge of Manipulation of genes, Transfer techniques, Expression systems and methods of selection. Students will gain the knowledge of isolation of nucleic acids (DNA and RNA) from prokaryotic and eukaryotic sources. They will learn qualitative and quantitative analysis of nucleic acids They will learn and observe the preparation of polytene chromosomes from chironomous larvae.
MBI 213 Core Course- Practical	Structural Biology and Molecular Modeling Lab	2	i. ii. iii. iii.	Hands on practical training Students learn the basics of mathematical modeling and computer biomolecular systems, dynamics and simulation of selected regulatory processes using the methods of mechanic and molecular dynamics, Monte- Carlo methods, molecular models, and the basics of systems theory. Students become familiar with well-known and popular molecular modeling and design packages as well as the virtual reality technology. The lecture and exercises prepare students for independent modeling of biomolecular systems and designing of enzyme inhibitors – potential drugs.

SEMESTER III

Course No. &	Title	Credits	Course Outcome
Description			
MBI 301 Core Course –Theory	Scientific Writing Skills	2	 i. The SWS <i>course</i> aims developing knowledge and <i>skills</i> in <i>scientific writing</i> from the basic level; therefore, there are no requirements for the initial competence. ii. A goal of scientific writing is to communicate scientific information clearly and concisely. Flowery, ambiguous, wordy, and redundant language run counter to the purpose of the writing. It must be set within the context of other published work.
MBI 302 Advance Course – Theory	Chemoinformatics and Drug Designing	3	 i. The student should be able to: Have the knowledge of the basic ligand/structure-based drug design¬ approaches. ii. Understand the basic algorithms used in the established software to¬ carry out the most common CADD project. iii. Understand the importance of proper use of various parameters in¬ cheminformatics application programs. Practical use of various computational tools available for computer¬ aided drug design including 2D/3D structural database.
MBI 303 Advance Course- Theory	Machine Learning Techniques	3	 i. Develop an appreciation for what is involved in learning models from data. ii. Understand a wide variety of learning algorithms. iii. Understand how to evaluate models generated from data.
MBI 304 Advance Course- Theory	Current Bioinformatics	2	i. Current Bioinformatics: The learning objectives of the course is that the student demonstrates the ability to: Describe the basic principles for the most common NGS platforms such as Illumina, Ion torrent, Roche 454 and Pacific biosciences

			ii.	Explain the advantages and disadvantages
				with the different NGS platforms and
				describe which of the platforms would be
				most optimal to study the genome,
				epigenome and transcriptome.
			iii.	Explain the different steps of Illumina
				sequencing (DNA library synthesis, DNA
				sequencing and data analysis).
			iv.	Describe different biochemical methods
				applied to enrich different parts of the
				genome and transcriptome before
				sequencing.
			V	Synthesize and quality control DNA
				libraries for Illumina sequencing –
				synthesis, purification and multiplexing.
			vi.	Understand and apply different types of
				quality control methods before, during and
				after Illumina DNA library synthesis
			vii	Understand the output data files from
			,	Illumina sequencing and be able to
				perform the most basic NGS analysis
				(demultiplexing genome alignment and
				DNA quantification)
			viii	Use different types of NGS analysis tools
			v 111.	ese unrerent types of reep analysis tools.
			i.	Python programming is intended for
				software engineers, system analysts,
MDI 205				program managers and user support
Advense Course Theory	Python Programming	2		personnel who wish to learn the Python
Advance Course – Theory				programming language. Learning
				Outcomes: Problem solving and
				programming capability.
			i.	At the end of the course students will be
				able to;
			ii.	Explain the regulatory requirements for
	Introduction to			conducting clinical trial
MBI 306	Clinical Trials and		iii.	Describe in detail about various types of
Elective Course- Theory	Pharmacovigilance /	2		clinical trial designs
	Selenium		iv.	Explain the responsibilities of key players
				involved in clinical trials
			v.	Describe the documentational
				requirements for Clinical trials

			vi.	Explain Adverse drug reaction and its
				management
			vii	Describe basic concepts and
			,	establishment of Pharmacovigilance
			viii	Explain ADR reporting methods and
			v 111.	tools used in Pharmacovigilance
			ix	Describe Pharmacoenidemiology
			17.	Pharmacoeconomics and safety
				pharmacology.
			i.	Cancer Genomics:
			ii.	Understand basic aspects of cancer
				pathology. What is cancer? Understand
				chromatin as it relates to gene expression
			iii	Understand epigenetics and somatic
				genetic changes in tumors
			iv	Understand modern aspects of RNA and
				protein biology.
			v.	Understand the cell cycle, angiogenesis
				and apoptosis.
			vi.	Be familiar with basic facets of
				carcinogenesis and methods to study the
				process. Be familiar with basic principles
	Concer Conceries/			and applications of cell culture and animal
	Biodiversity Informatics & Molecular			models to study cancer.
MBI 307		2	vii.	Understand how genetics contributes to
Elective Course- Theory				predisposition and progression of cancer.
			viii.	Understand the differences and overlap of
	Phylogenetics			cancers by tissue type.
			ix.	Understand how immunotherapy is, and
				can be, used to treat human illness:
				strategies, advantages, and hurdles to
				overcome to realize its potential.
			x.	Biological Nomenclature & Species
				Description
			xi.	Practical Aspects of Phylogenetic Data
				Collection & Analysis
			xii.	The role of Phylogenetic Biology in
				Biological Problem Solving
			xiii.	A Survey of the History of Life on Earth
			xiv.	Principles of Bioinventory, Biodiversity
				Conservation

MBI 308 Elective Course- Theory	System Biology/Artificial Intelligence	2	i. U ap sy bi ex qu sy ii. A fa bi	Inderstand the basics of Systems Biology pproaches in biological systems; apply ystems approaches to the analysis of iological systems; apply model driven xperimentation to solve biological uestions; analyze biological systems in a ystems-wide manner. Artificial Intelligence: Students will be amiliar with AI and its applications in iology.
MBI 309 Advance Course- Practical	Chemoinformatics and Drug Designing Lab	2	i. H ii. T ka ba iii. U th m iv. U of ch Pa to da da	Iands on practical training The student should be able to: Have the nowledge of the basic ligand/structure- ased drug design¬ approaches. Understand the basic algorithms used in the established software to¬ carry out the nost common CADD project. Understand the importance of proper use f various parameters in¬ heminformatics application programs. tractical use of various computational pols available for computer¬ aided drug esign including 2D/3D structural atabase.
MBI 310 Advance Course- Practical	Machine Learning Techniques Lab	2	i. H ii. D in iii. U al iv. U ge	Iands on practical training Develop an appreciation for what is nvolved in learning models from data. Understand a wide variety of learning Igorithms. Understand how to evaluate models enerated from data.
MBI 311 Advance Course- Practical	Current Bioinformatics Lab	2	i. H ii. E w da m ep iii. E se se iv. D ar	lands on practical training explain the advantages and disadvantages with the different NGS platforms and escribe which of the platforms would be nost optimal to study the genome, pigenome and transcriptome. Explain the different steps of Illumina equencing (DNA library synthesis, DNA equencing and data analysis). Describe different biochemical methods pplied to enrich different parts of the

				genome and transcriptome before
				sequencing.
			v.	Synthesize and quality control DNA
				libraries for Illumina sequencing –
				synthesis, purification and multiplexing.
			vi.	Understand and apply different types of
				quality control methods before, during and
				after Illumina DNA library synthesis.
			vii.	Understand the output data files from
				Illumina sequencing and be able to
				perform the most basic NGS analysis
				(demultiplexing, genome alignment and
				DNA quantification).
			viii.	Use different types of NGS analysis tools.
MRI 317	Python Programming		i.	Hands on practical training
Advance Course Practical	I yulon i rogramming	2	ii.	Problem solving and programming
Auvalice Course -I factical	Lau			capability.
	Introduction to			
MDI 212	Clinical Trials and		i.	Using tools for clinical trial studies and
Floative Course Practical	Pharmacovigilance	2		pharmacovigilance
Elective Course- Plactical	Lab /			
	Selenium lab			

SEMESTER IV

Course No. &	Title	Credits	Course Outcome
Description			
MBI 401 Core Course	Research Project	20	 i. This course will include allotment of an individual research work to each student to be carried out in fourth semester. ii. This will not only enhance knowledge base of students but also provide them exposure as to how to conduct and carry out a research-based task. iii. Students will also learn how to compile and interpret results.

Advanced Diploma in Bioinformatics 2019 Course

SEMESTER I

Course No. &	Title	Credits	Course Outcome
Description			
ADB 101 Basic Course-Theory	Cell Biology (C)	2	 i. To gain the knowledge of living cells such as prokaryotic and eukaryotic cells, formation of cells, cell adhesion and cellular signaling, role of cell division and its regulation on diseases like cancer. ii. Understand evolution of cell, structure and types of cells iii. Learn structure and function of various cell organelles iv. Explore fluid mosaic model of cell membrane and its role; active and passive transport across it v. Knowledge of structure and function of cytoskeleton elements vi. Learn cell division, cell cycle, cell interactions, signaling and cell death.
ADB102 Basic Course – Theory	Biochemistry (C)	2	 i. Students will be imparted knowledge about structure and function of different biomolecules (proteins, lipids, nucleic acids, and carbohydrates), synthesis and metabolism of biomolecules. ii. Students will be imparted knowledge about structure and function of different biomolecules (proteins, lipids, nucleic acids, and carbohydrates), synthesis and metabolism of biomolecules. iii. Gain familiarity with protein chemistry iv. Learn primary, secondary and tertiary structures of proteins and nucleic acids, role of minerals, vitamins in protein functions v. Mononucleotides and role of cAMP vi. Gain understanding of various analytical techniques used for study of biomolecules
ADB103 Basic Course – Theory	Biomathematics (C)	2	i. They may be employed as statisticians, scientific programmers, or in areas of bio- science where training in quantitative techniques is needed.

			ii.	Further, they are equipped to pursue
				graduate studies in theoretical biology,
				physiology, biostatistics, statistics, and
				areas of applied mathematics.
			i.	The subject and its relation with the other
				sciences, restate the principal concepts
				about biostatistics.
ADD104 Regia Course Theory	Biostatistics (C)	2	ii.	Collect data relating to variable/variables
Dasic Course – Theory				which will be examined and calculate
				descriptive statistics from these data.
				Identify data relating to variable/variables
			i.	Understanding of Basics: Gain a
				fundamental understanding of
				programming concepts, including
				variables, data types, operators, and
				control structures in the C programming
				language.
ADB105	C Programming and	3	ii.	Problem-Solving Skills: Develop the
Basic Course – Theory	Data structure (C)			ability to analyze problems and design
				algorithms to solve them using C
				programming techniques.
			111.	Programming Proficiency: Acquire
				proficiency in writing, compiling, and
				debugging C programs to implement
				simple and complex tasks.
			1.	Knowledge and Awareness of the Basic
				Computer Science and Mathematics
ADB106	Biological Informatics			
Basic Course – Theory	(C)	2	11.	Existing Software Effectively to Extract
				Information from Large Databases and to
				Use This Information In Computer
			:	DPMS: Decigne SOL evening to add date
			1.	to the database addit evicting data and to
				delate data from the database. Declaras
				and enforces integrity constraints on a
ADB107 Basic Course – Theory				database Understands and applies
	DBMS & MongoDB	2		indexing mechanisms in databases Will
	(C)	5		he able to describe and develop Relational
				Algebra and Relational Calculus queries
				ingeora and relational calculus queries.
			ii.	MongoDB: The Easiest Way to Deploy
			•	Operate, and Scale MongoDB in the

				Cloud in Just a Few Clicks. Create
				Deployments in Minutes w/ MongoDB
				Atlas. Speeding Progress. Reducing TCO.
				Streamlines Operations, Types: Avail. on
				AWS GCP Azure Zero-downtime
				migration
			i	Write Perl scripts to perform text
			1.	processing and data manipulation tasks
				Apply regular expressions affectively for
			11.	Apply regular expressions effectively for
				Life modules from CDAN to solve
			111.	ounze modules from CPAN to solve
				various programming challenges.
			1V.	Develop scripts for system administration
				and automation.
			v.	Create basic dynamic web content using
				Perl's CGI capabilities (if covered).
		2	vi.	Understand and implement basic
	PERL Programming / HTML Programming			programming concepts in Perl.
			vii.	Construct structured web pages using
ADB108				HTML elements for headings, paragraphs,
Elective Course - Theory				lists, etc.
			viii.	Create hyperlinks to navigate between
				web pages and external resources.
			ix.	Apply semantic HTML elements for
				improved accessibility and search engine
				optimization.
			х.	Embed images, audio, video, and other
				media using appropriate HTML tags.
			xi.	Understand the basics of web forms and
				input elements.
			xii.	Recognize the role of HTML in web
				development and its integration with CSS
				and JavaScript.
			xiii.	Design and develop simple web pages
				using HTML.
			i.	Students will be able to identify
				prokaryotic and eukaryotic cells and sub-
				cellular organelles by microscopic
ADB109	Cell Biology and			examinations
Basic Course – Practical	Biochemistry Lab (C)	4	ii.	Skill in observing mitosis and meiosis in
				onion root tip cells
			iii.	Learn enumeration of blood cells using
				hemocytometer chamber.

			iv.	Gain skills for isolation of proteins from
				biological samples
			v.	Estimation of proteins using colorimetric
				and TLC methods
			vi.	Determination of pKa values, titration
				curve of amino acids
			vii.	Isolation and analysis of vitamins and
				pigments
			viii.	Learn ion exchange chromatography for
				isolation of natural dyes.
			i.	Hands on practical training
	C Programming and		ii.	Programming Proficiency: Acquire
ADDIIU Pagia Course Dreatical	Data Structure Lab	2		proficiency in writing, compiling, and
Dasic Course – Fractical	(C)			debugging C programs to implement
				simple and complex tasks.
			i.	Hands on practical training
			ii.	"Knowledge and Awareness of the Basic
	Biological Informatics Lab (C)			Principles and Concepts of Biology,
ADB111		2		Computer Science and Mathematics.
Basic Course – Practical		2	iii.	Existing Software Effectively to Extract
				Information from Large Databases and to
				Use This Information in Computer
				Modeling
			iv.	Hands on practical training
			v.	DBMS: Designs SQL queries to add data
				to the database, edit existing data, and to
				delete data from the database. Declares
				and enforces integrity constraints on a
				database. Understands and applies
				indexing mechanisms in databases. Will
ADD112	DPMS & MongoDP			be able to describe and develop Relational
ADD112 Basic Course Practical	lah (C)	2		Algebra and Relational Calculus queries.
Dasie Course –i factical			vi.	MongoDB: The Easiest Way to Deploy,
				Operate, and Scale MongoDB in the
				Cloud in Just a Few Clicks. Create
				Deployments in Minutes
				w/ MongoDB Atlas. Speeding Progress.
				Reducing TCO. Streamlines Operations.
				Types: Avail. on AWS, GCP, Azure,
				Zero-downtime migration.
ADB113	PERL Programming		ii.	Hands on practical training
Elective Course -	Lab /HTML	i. 2	iii.	Write Perl scripts to perform text
Proctical	Programming Lab			processing and data manipulation tasks.

	Apply manufar anneasions offectively for
10	. Apply regular expressions effectively for
	pattern matching and substitution.
v	. Utilize modules from CPAN to solve
	various programming challenges.
vi	. Develop scripts for system administration
	and automation.
vii	. Create basic dynamic web content using
	Perl's CGI capabilities (if covered).
viii	. Understand and implement basic
	programming concepts in Perl.
ix	. Construct structured web pages using
	HTML elements for headings, paragraphs,
	lists, etc.
Х	. Create hyperlinks to navigate between
	web pages and external resources.
xi	. Apply semantic HTML elements for
	improved accessibility and search engine
	optimization.
xii	. Embed images, audio, video, and other
	media using appropriate HTML tags.
xiii	. Understand the basics of web forms and
	input elements.
xiv	. Recognize the role of HTML in web
	development and its integration with CSS
	and JavaScript.
XV	. Design and develop simple web pages
	using HTML.

SEMESTER II

Course No. &	Title	Credits	Course Outcome
Description			
ADB 201 Core Course –Theory	Statistical Analysis System (SAS) (C)	2	 i. Creating new knowledge (Cognitive) ii. Developing feelings and emotions (Affective) iii. Enhancing physical and manual skills (Psychomotor) iv. Learning objectives can also be scaffolded so that they continue to push student learning to new levels in any of these three categories.
ADB 202 Core Course – Theory	R and Data Analytics (C)	3	 i. Master the use of the R and RStudio interactive environment. ii. Expand R by installing R packages. iii. Explore and understand how to use the R documentation. iv. Read Structured Data into R from various sources. v. Understand the different data types in R. vi. Understand the different data structures in R. vii. Proactivity & Anticipating Needs: viii. Mitigating Risk & Fraud: ix. Delivering Relevant Products: x. Personalization & Service: xi. Optimizing & Improving the Customer Experience.
ADB 203 Core Course – Theory	JAVA and BioJAVA Programming (C)	3	 i. On completion of the course the student should be able to: Use an integrated development environment to write, compile, run, and test simple object- oriented Java programs. ii. Read and make elementary modifications to Java programs that solve real-world problems.
ADB 204 Core Course – Theory	Science of Omics (C)	3	 i. Students will be able to critically discuss and solve problems relating to: The ways in which investigations of the four 'omics' realms (genome, transcriptome, proteome and metabolome) are tackled analytically;

	ii.	The statistical approaches and
		workflow practices involved in
		genomics and in a range of
		transcriptomic approaches;
	iii.	The ways in which protein
		functions can be understood in
		terms of their structures and the
		relative advantages of different
		analytical approaches in protein
		structure determination:
		The relationship between the
	IV.	The relationship between the
		proteome and other omics
		domains, and the ways in which
		the proteome can be investigated
		using a variety of technological
		approaches;
	v.	The source and variety of
		components of the metabolome
		and of their relationship with
		entities in the other 'omics'
		domains, and the ways in which
		the metabolome can be
		investigated using a variety of
		technological and statistical
		approaches:
	vi.	The ways in which biological
		systems can be understood at a
		systems or network level and the
		ways in which models can be
		constructed and analyses
		constructed and analyses
		i c l draw biological
		inferences about the interactions
		between different parts of a
		network.
	vii.	Use computers creatively to
		manipulate omics-level datasets
		and protein structure files;
	viii.	Use computer programs to execute
		a variety of planned analyses in
		several areas relating to omics
		domains and to protein structure;

			ix. Critically evaluate and synthesise the results of omics-level analyses
ADB 205 Core Course - Theory	Proteomics (C)	2	 i. The students will have an introduction to current methodologies and trends in the field of proteomics. ii. The students should also obtain an overview and awareness of typical proteomics applications both from lectures and an introduction to proteomics lab work. iii. After completed course the student should be able to describe and discuss the possibilities and advantages, and the complexity and drawbacks of various proteomics technologies compare traditional methods with emerging technologies. iv. The student should be able to suggest suitable approaches for specified
			applications and motivate the choice speculate and argue about the future of proteomics technologies. With the acquired knowledge, the students should be able participate in scientific discussions regarding proteomics technologies critically evaluate scientific results.
ADB 206 Core Course -Theory	Advanced Bioinformatics	2	 i. Current Bioinformatics: The learning objectives of the course is that the student demonstrates the ability to: ii. Describe the basic principles for the most common NGS platforms such as Illumina, Iontorrent, Roche 454 and Pacific biosciences iii. Explain the advantages and disadvantages with the different NGS platforms and describe which of the platforms would be most optimal to study

				the genome, epigenome and
				transcriptome.
			iv.	Explain the different steps of Illumina
				sequencing (DNA library synthesis, DNA
				sequencing and data analysis).
			v.	Describe different biochemical methods
				applied to enrich different parts of the
				genome and transcriptome before
				sequencing
			vi	Synthesize and quality control DNA
			, 1.	libraries for Illumina sequencing –
				synthesis purification and multiplexing
			vii	Understand and apply different types of
			v11.	quality control methods before during
				and after Illumina DNA library synthesis
			viii	Understand the output data files from
			v111.	Illuming sequencing and be able to
				perform the most basic NGS analysis
				(demultiplexing, genome alignment and
				(demutiplexing, genome angliment and DNA quantification)
			iv	Use different types of NGS
			17.	analysis tools
				anarysis tools.
			i.	Develop an appreciation for what is
				involved in learning models from data.
ADB 207	Data Mining through		ii.	Understand a wide variety of learning
Core Course -Theory	Machine Learning	2		algorithms.
			iii	Understand how to evaluate models
				generated from data.
				The student should be able to: Have the
			1.	Ine student should be able to. Have the
	Molecular Modeling			knowledge of the basic ligand/ structure
ADD 200	& Drug Designing	3		Understand the basic electric used in
Core Course-Theory	& Drug Designing		11.	the established software to serve out the
				most common $CADD$ project
				most common CADD project.
ADB 209	SAS and Data	2	i.	Learning and using SAS software for
Core Course - Practical	Analytics lab (C)	_		analytical purposes
			i.	On completion of the course the student
	IAVA and DistAVA			should be able to: Use an integrated
ADD 210	JAVA and BIOJAVA	2		development environment to write,
Core Course - Practical	Programming lab (C)			compile, run, and test simple object-
				oriented Java programs. Read and make

			alamantany modifications to Law
			programs that solve real-world problems.
			Students will be able to critically discuss and solve problems relating to:
ADB 211 Core Course - Practical	Omics Analysis Lab (C)	2	i. The ways in which investigations of the four 'omics' realms (genome, transcriptome, proteome and metabolome) are tackled analytically;
			ii. The statistical approaches and workflow practices involved in genomics and in a range of transcriptomic approaches;
			 iii. The ways in which protein functions can be understood in terms of their structures, and the relative advantages of different analytical approaches in protein structure determination;
			 iv. The elationship between the proteome and other 'omics' domains, and the ways in which the proteome can be investigated using a variety of technological approaches;
			v. The source and variety of components of the metabolome and of their relationship with entities in the other 'omics' domains, and the ways in which the metabolome can be investigated using a variety of technological and statistical approaches;
			 vi. The ways in which biological systems can be understood at a systems or network level, and the ways in which models can be constructed and analyses performed to draw biological inferences about the interactions between different parts of a network.
			vii. Use computers creatively to manipulate omics-level datasets and protein structure files;
			viii. Use computer programs to execute a variety of planned analyses in several areas relating to omics domains and to protein structure;

			ix. Critically evaluate and synthesize the results of omics-level analyses to draw biological inferences
ADB 212 Core Course - Practical	Data Mining through Machine Learning lab	2	 i. Develop an appreciation for what is involved in learning models from data. ii. Understand a wide variety of learning algorithms. iii. Understand how to evaluate models generated from data.
ADB 213 Core Course- Practical	Molecular Modeling & Drug Designing Lab	2	 Performing docking studies to understand basic ligand/structure-based drug design- approaches.

81shaikh

PRINCIPAL Bharati Vidyapeeth (Deemed to be University) Rajiv Gandhi Institute of I.T.& B.T. Pune-Satara Road, Pune - 411046.