UNIT-V LINKED STACK AND LINKED QUEUE

* Required	
1. PRN number *	
2. Name: *	
Z. Name.	
3. Div: *	

Section

4. What is the definition of a Linear list? * (1 Point) A data object consisting of (e1, e2, e3...en) where n is a negative natural number A data object consisting of (e1, e2, e3...en) where n is an infinite natural number A data object consisting of (e1, e2, e3...en) where n is an even natural number A data object consisting of (e1, e2, e3...en) where n is a finite natural number 5. What operation determines whether the list is empty? * (1 Point) Create a Linear List Determine whether the list is empty) Destroy a Linear List Determine the size of the List Option 2

		rn; fun1(head->next); printf("%d ", head->data); (1 Point)
	\bigcirc	Prints all nodes of linked lists
	\bigcirc	Prints all nodes of linked list in reverse order
	\bigcirc	Prints alternate nodes of Linked List
	\bigcirc	Prints alternate nodes in reverse order
7.	List	ch of the following points is/are true about Linked data structure when it is compared with array? *
	\bigcirc	Arrays have better cache locality that can make them better in terms of performance.
	\bigcirc	It is easy to insert and delete elements in Linked List
	\bigcirc	Random access is not allowed in a typical implementation of Linked Lists
	\bigcirc	The size of array has to be pre-decided, linked lists can change their size any time.
	\frown	
8.	8. A circularly linked list is used to represent a Queue. A single variable p is used to access the Queue. To which node should p point such that both the operations enQueue and deQueue can be performed in constant time? (GATE 2004) * (1 Point)	
	\bigcirc	rear node
	\bigcirc	front node
	\bigcirc	not possible with a single pointer
	\bigcirc	node next to front

6. void fun1(struct node* head) { if(head == NULL)

9.	Consider the situation where no other data structure like arrays, linked list is available to you. * (1 Point)
	O 1
	O 2
	<u> </u>
10.	Which of the following operations on a queue data structure has a time complexity of O(1)? A) Enqueue B) Dequeue C) Peek
	D) Clear * (1 Point)
	A and B
	O B only
	C only
	A and D

of the nun high	riority queue can efficiently implemented using which he following data structures? Assume that the other of insert and peek (operation to see the current nest priority item) and extraction (remove the highest prity item) operations are almost same. * (1 Point)
\bigcirc	Array
\bigcirc	Linked List
\bigcirc	Heap Data Structures like Binary Heap, Fibonacci Heap
\bigcirc	None of the above
12. Which of the following is true about linked list implementation of queue? * (1 Point)In push operation, if new nodes are inserted at the beginning of	
\bigcirc	linked list, then in pop operation, nodes must be removed from end.
\bigcirc	In push operation, if new nodes are inserted at the end, then in pop operation, nodes must be removed from the beginning.
\bigcirc	Both of the above
\bigcirc	None of the above

- 13. A Priority-Queue is implemented as a Max-Heap. Initially, it has 5 elements. The level-order traversal of the heap is given below: 10, 8, 5, 3, 2 Two new elements "1' and "7' are inserted in the heap in that order. The level-order traversal of the heap after the insertion of the elements is: * (1 Point)
 - 10, 8, 7, 5, 3, 2, 1
 - 0 10, 8, 7, 2, 3, 1, 5
 - 10, 8, 7, 1, 2, 3, 5
 - 10, 8, 7, 3, 2, 1, 5

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

