Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune Faculty of Engineering and Technology Department of Chemical Engineering B. Tech. (Chemical) Curriculum Structure (2023 Course)

BHARATI VIDYAPEETH (DEEMED TO BE UNIVERSITY)

COLLEGE OF ENGINEERING, PUNE

B. Tech. (Chemical): Semester –I (2023 COURSE)

Sr. No	Catagory	Course	Course	Teacl	hing Sch	neme	F	Examina	ation Sc	cheme	(Marks	5)		Cre	edits	
Sr. No.	Category	Code	Course	L	Р	Т	ESE	IA	TW	PR	OR	Total	L	Р	Т	Total
1	BSC		Engineering Mathematics- I	3	-	1	60	40	-	-	-	100	3	-	1	4
2	BSC		Engineering Chemistry	3	2	-	60	40	50	-	-	150	3	1	-	4
3	ESC		Computer Aided Engineering Graphics	4	2	-	60	40	50	-	-	150	4	1	I	5
4	PCC		Analytical Techniques	4	2	-	60	40	50	-	-	150	4	1	I	5
5	PCC		Chemical Engineering (Scope and Significance)	4	-	-	60	40	-	-	-	100	4	-	-	4
6	HSMC		Communication Skills	-	2	-	-	-	50	-	-	50	-	1	-	1
7	SBC		Skill Based Course-I: Computer Programming- I	-	4	-	-	-	25	-	25	50	-	2	-	2
Total				18	12	1	300	200	225	-	25	750	18	6	1	25

BHARATI VIDYAPEETH (DEEMED TO BE UNIVERSITY)

COLLEGE OF ENGINEERING, PUNE

B. Tech. (Chemical): Semester –II (2023 COURSE)

C N	Catal			Teac	Teaching Scheme Examination Scheme (Marks)			Credits								
Sr. No.	Category	Code	Course	L	Р	Т	ESE	IA	TW	PR	OR	Total	L	Р	Т	Total
1	BSC		Engineering Mathematics- II	3	-	1	60	40	-	-	-	100	3	-	1	4
2	BSC		Engineering Physics	3	2	-	60	40	50	-	-	150	3	1	-	4
3	PCC		Biological Sciences	4	2	-	60	40	50	-	-	150	4	1	-	5
4	PCC		Mechanical Operation	4	2	-	60	40	50	_	-	150	4	1	-	5
5	PCC		Material and Energy Balance Calculations	4	-	-	60	40	-	-	-	100	4	-	-	4
6	HSMC		Universal Human Values	-	2	-	-	-	50	-	-	50	-	1	-	1
7	SBC		Skill Based Course – II: Computer Programming- II	-	4	-	-	-	25	-	25	50	-	2	-	2
Total				18	12	1	300	200	225	-	25	750	18	6	1	25

Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune Faculty of Engineering and Technology Department of Chemical Engineering B. Tech. (Chemical) Curriculum: Syllabi of First Year Courses

Programme: B. Tech Chemical (2023 Course) Semester- I (Chemical)

ENGINEERING MATHEMATICS -I

Designation: Basic Science

Pre-requisite Courses: Algebra of matrices and its Determinants, Maxima and Minima of single variable functions

Teaching So	cheme	Examination Scheme	Credits Allotted		
Lecture	: 03 Hours/Week	End Semester Examination	: 60 Marks	Lecture	: 03
Tutorial	: 01 Hours/Week	Internal Assessment	: 40 Marks	Tutorial	: 01
Total	: 04 Hours/Week	Total	: 100 Marks	Total	: 04

Course Outcomes

1 Understand rank of matrix and apply it to solve system of line arc equations

2 Understand the DeMoiver's theorem, hyperbolic functions and apply it in engineering problems.

3 Understand the Leibnitz's rule and apply it to find nth derivative of a function.

4 Understand fundamental concepts of convergence, divergence of infinite series and its tests.

5 Understandtheconceptofpartialdifferentiationandapplyittofindtotalderivative.

6 Evaluate the maxima and minima of any two variables functions..

	Topics Covered	
UNIT-I	Matrices	(06 Hours)
	Rank, Normal form, System of Linear Equations, Linear Dependence and	
	Independence, Linear and Orthogonal Transformations, Eigen values, Eigen	
	Vectors, Cayley – Hamilton Theorem.	
UNIT-II	Complex Numbers and Applications	(06 Hours)
	Definition, Cartesian, Polar and Exponential Forms, Argand's Diagram,	
	De'Moivre's theorem and its application to find roots of algebraic equations.,	
	Hyperbolic Functions, Logarithm of Complex Numbers, Separation into Real	
	and Imaginary parts, Application to problems in Engineering	
UNIT-III	Differential Calculus	(06 Hours)
	Successive Differentiation, nth Derivatives of Standard Functions, Leibnitz's	
	Theorem	
	Expansion of Functions: Taylor's Series and Maclaurin's Series	
UNIT-IV	Differential Calculus	(06 Hours)
	Indeterminate Forms, L' Hospital's Rule, Evaluation of Limits.	
	Infinite Series: Infinite Sequences, Infinite Series, Alternating Series, Tests for	

		Convergence, Absolute and Conditional Convergence, Power series, Range of			
TINIT	TD X7	Convergence			
UNI	T-V	Partial Differentiation and Applications	(06 Hours)		
		Partial Derivatives, Euler's Theoremon Homogeneous Functions, Implicit			
		functions, Total Derivatives, Change of Independent Variables, Errors and			
TINIT	T-VI	Approximations. Jacobian	(06 Hours		
UNI	1-11	Jacobians and their applications, Chain Rule, Functional Dependence.			
		Maxima and Minima: Maxima and Minima of Functional Dependence.			
		Lagrange's method of undetermined multipliers.			
		Lagrange's method of andetermined matupiters.			
Proj	ect Bas	ed Learning			
1	Echelo				
2	Norma	l form			
3	Linear	and orthogonal transformation			
4	Eigen values and eigen vectors				
5		1 diagram			
6	De Mo	ovre'st heorem			
7	• •	polic and logarithmic functions			
8	Leibni	tz theorem			
9	Taylor	's theorem			
10	L'Hos	pital rule			
11	Tests f	or convergence			
12	Euler t	heorem for homogeneous functions			
13	Total d	lerivative			
14	Maxim	a and minima for two variable function			
15	Langra	ge undetermined multipliers			
Text	Books/	References			
1		d Mathematics (Volumes I and II) by P. N. Wartikar & J. N. Wartikar (Pune Vid	yarthi Griha		
	Prakashan, Pune),7thEdition,1988,Reprint 2010				
2	Higher Engineering Mathematics by B.S. Grewal (Khanna Publication, Delhi),42th Edition,2012				
3	Higher Engineering Mathematics by B.V. Ramana (Tata McGraw-Hill), Edition, 2008				
4	_	ced Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Ltd.), 8th			
		n,1999,Reprint2010			
5		ced EngineeringMathematics,7e,byPeterV.O'Neil(ThomsonLearning),Edition 20	07		
		ced Engineering Mathematics, 2e,byM.D.Greenberg(Pearson Education),2nd,Ed			

Syllabus for Unit Tests					
Unit Test I	Units I, II, and III				
Unit Test II	Units IV, V, and VI				

ENGINEERING CHEMISTRY

Designation: Basic Science

Pre-requisite Courses: Basic chemistry, Basic electrochemistry and chemistry of materials

Teaching Sc	heme	Examination Scheme	Credits Allotted		
Lecture	: 03 Hours/Week	End Semester Examination	: 60 Marks	Lecture	: 03
Practical	: 02 Hours/Week	Internal Assessment	: 40 Marks	Practical	: 01
Total	: 05 Hours/Week	Term Work	: 50 Marks	Total	: 04
		Total	: 150 Marks		

Course Outcomes

- 1 Understand the different methods of analysis of water, different environmental pollutants and importance of green chemistry
- 2 Understand the importance of fuels and apply it for various engineering applications.
- 3 Explain the drawbacks of corrosion and different methods of elimination of corrosion
- 4 Apply the concept of polymer to study advanced materials.
- 5 Apply the basic concept of chemistry to explain the chemical properties and processes of materials of nanoscale
- 6 Understand the instrumental analysis helpful for various engineering applications

Topics Covered

Topics Covered	
Water Technology & Green Chemistry	(06 Hours)
Introduction, sources and impurities in water, Hardness of water, types, and	
determination of hardness using EDTA titration, softening of hard water by	
ion- exchange process. Numerical problems on hardness of water. Major	
environmental pollutants, Basic principles of green chemistry. Atom	
economy, Synthesis of adipic acid, Industrial applications of green chemistry,	
Numerical problems on Atom economy	
Electrochemical energy and solar energy	(06 Hours)
Fuels: Introduction, Definition, importance of fuels, calorific value, types,	
fluidized bed catalytic cracking, knocking(Petrol engine), mechanism and its	
ill effects, biodiesel, power alcohol, octane and cetane number.Solar Energy:	
Introduction, construction, working and applications of photovoltaic cell.	
Corrosion technology and it's control	(06 Hours)
Introduction, Electrochemical theory of corrosion, Types of corrosion,	
Differential metal and differential aeration (pitting and water line) caustic	
	 Water Technology & Green Chemistry Introduction, sources and impurities in water, Hardness of water, types, and determination of hardness using EDTA titration, softening of hard water by ion- exchange process. Numerical problems on hardness of water. Major environmental pollutants, Basic principles of green chemistry. Atom economy, Synthesis ofadipic acid, Industrial applications of green chemistry, Numerical problems on Atom economy Electrochemical energy and solar energy Fuels: Introduction, Definition, importance of fuels, calorific value, types, fluidized bed catalytic cracking, knocking(Petrol engine), mechanism and its ill effects, biodiesel, power alcohol, octane and cetane number.Solar Energy: Introduction, construction, working and applications of photovoltaic cell. Corrosion technology and it's control Introduction, Electrochemical theory of corrosion, Types of corrosion,

		embrittlement. Factors affecting the rate of corrosion, Corrosion control:			
		Cathodic protection, sacrificial anode and impressed current methods, Metal			
		coatings, Galvanization and tinning, Anodizing, Anodizing of aluminium,			
		Organic coatings: Paint and varnishes.			
		Metal finishing: Introduction, Technological importance. Principles of			
		electroplating. Electroplating of chromium. Electro less plating: Introduction,			
		electro less plating of nickel & copper on PCB with applications			
UNI	T-IV	Engineering Materials and Technology	(06 Hours)		
		Polymers: Introduction, classification, Synthesis and applications of			
		Polyurethane, polycarbonates, Conducting Polymers: Synthesis & Mechanism			
		of conduction in poly aniline.			
		Composites: Introduction, constitution, classification. Types: fiber glass,			
		hybrid and reinforced Composites with applications.			
UNI	T-V	Nano materials	(06 Hours)		
		Introduction, size dependent properties (Surface area, Electrical, Optical,			
		Catalytic and Thermal properties). Synthesis of nano materials: Top down			
		and bottom up approaches, Synthesis by Sol-gel, precipitation and chemical			
		vapour deposition, Nano scale materials: Fullerenes, Carbon nano tubes and			
		graphenes – properties and applications.			
UNI	T-VI	Instrumental methods of analysis	(06 Hours)		
		Introduction, Theory, Instrumentation and applications of colorimetry, pH			
		metry, conductometry Introduction to spectroscopy, principles and			
		applications of UV/Vis.Spectroscopy			
<u> </u>	(D				
0		ed Learning			
1.	-	rison of Hardness, Alkalinity, Dissolved oxygen, Chlorides and COD of wat	ter from two		
2		nt sources			
2.		al of industrial pollutants from wastewater by adsorption on activated charcoal			
3.	1	ation of biofuels from two natural sources			
4.	-	with the production of H_2 as a clean fuel			
5.	Prevention of corrosion by metal coupling				
6.	Construction of bio sensor in engineering applications				
7.	Design and simulation of automatic solar - photo voltaicpanels as renewable energy source.				
8.	Synthesis of Conjugated Polymers and Molecules Using Sugar Reagents and Solventless Reactions.				
0	OR Composite materials and it properties, applications and types				
9.		dy mechanism of lubrication			
10.		pplating- study on how different metals can be used and the practical applications	5		
11		e Ag- nanoparticles by using sol-gel method			
12	Prepara	ation of Ag nanoparticle from two natural sources			

13	With the help of green chemistry principles, prepare any organic dye by using Traditional and					
	Green pathway.					
14	Prepare epoxy resins by using suitable metho					
15	Measurement and effect of waste disposal from laboratories in the college					
Prac	eticals					
(An	y Eight of the Following)					
1.	Determination of Hardness of water sample by EDTA method					
2.	To determine strength of acid by pH – metric Titration					
3.	To measure the strength of acid by conductometric titration					
4.	Measurement of Surface tension of a given liquid by Stalgmometer.					
5.	To determine alkalinity water sample.					
6.	Estimation of the given amount of copper in the given solution by colorimetry					
7.	Synthesis of conducting polyaniline from aniline by oxidative polymerization					
8.	Determination of iron content in the given solution by Mohr's method					
9.	To determine the strength of given acid solution by titrating it against base solution using indicator					
10.	Determination of reaction rate, order and molecularity of hydrolysis of ethyl acetate					
11	Verification of Beer-Lambert's Law.					
12	Determination of Viscosity of Liquids by Ostwald's Viscometer					
13	Determination Of Chloride Content Of Water By Argentometry					
14	Estimation of copper from brass by iodometry					
15	To study set up of Daniel cell.					
Text	t Books/References					
1	Engineering Chemistry, Jain P.C & Jain Monica, Dhanpat Rai & Sons, Delhi (1992)					
2	Engineering Chemistry, O. G. Palanna, Tata McGraw-Hill Publication, New Delhi					
3	A textbook of Engineering Chemistry, S. S. Dara, McGraw-Hill Publication, New Delhi					
4	Engineering Chemistry- Fundamentals and applications, Shikha Agarwal, Cambridge Publishers					
	(2015)					
5	Polymer Science and technology (2nd Edition), P. Ghosh, Tata McGRAW Hill, (2008)					
6	Principles of Instrumental Analysis, Douglas A. Skoog, F. James Holler, Stanley R.					
	Crouch, Cengage learning (2017)					
7	Polymers: Chemistry & Physics of Modern Materials (2nd edition) J.M.G.Cowie, Blackie,					
	Academic & Professional(1994)					
8	Integrated design and operation of water treatment facilities, Kawamura, Susumu. John Wiley &					
	Sons(2000)					
Sylla	abus for Unit Tests					

Unit Test I	Units I, II, and III
Unit Test II	Units IV, V, and VI

COMPUTER AIDED ENGINEERING GRAPHICS

Designation: Engineering Science Course

Pre-requisite Courses: Basics of Mathematics at Secondary School Level

Teaching Scheme		Examination Scheme		Credits Allotted	
Lecture	: 04 Hours/Week	End Semester Examination	: 60 Marks	Lecture	: 04
Practical	: 02 Hours/Week	Internal Assessment	: 40 Marks	Practical	: 01
Total	: 06 Hours/Week	Term Work	: 50 Marks	Total	: 05
		Total	: 150 Marks		

Course Outcomes

- 1 Understand dimensioning methods and drawing of engineering curves
- 2 Draw orthographic projections using 1st angle method of projection
- 3 Draw Isometric views from given orthographic projections
- 4 Draw projection of points, lines and planes.

5 Draw projection of different solids

6 Draw development of lateral surfaces of solids

Topics Covered				
UNIT-I	Fundamentals of CAD and Engineering Curves			
	Introduction to Engineering Drawing, Types of lines and Dimensioning,			
	Layout and size of drawing sheets, Scales. Engineering Curves-Ellipse			
	drawing by Directrix Focus Method, Arc of Circle Method and Concentric			
	Circle Method, In volutes of acircle, Cycloid, Archimedean Spiral, Helixon			
	cone and Cylinder. Fundamentals of Computer Aided Drafting(CAD) and its			
	applications, Various software's for Computer Aided Graphics/Drafting.			
	AutoCAD initial setting and AutoCAD commands			
UNIT-II	Orthographic Projections	(08 Hours)		
	Basic principles of orthographic projection (First and Third angle method).			
	Orthographic projection of objects by first angle projection method only.			
	Procedure for preparing scaled drawing, sectional views and types of cutting			
	planes and their representation, hatching of sections.			
UNIT-III	Sectional Orthographic Projections	(08 Hours)		
	Types of Sections, Sectional orthographic Projection.			
UNIT-IV	Isometric Projections	(08 Hours)		
	Isometric view, Isometrics cale to draw Isometric projection, non-isometric			

		lines, and construction of isometric view from given orthographic views and to construct isometric view.			
UNIT-V			(00 II		
Projections of Points, Lines, Planes and Solids Projections of points, projections of lines, lines inclined to one refere plane, lines inclined to both reference planes. (Lines in First Quadrant Or Projection of prism, pyramid, cone and cylinder by rotation method		Projections of Points, Lines, Planes and Solids	(08 Hours)		
TINI	UNIT-VI Development of Lateral Surfaces				
UNI	1-11	-	(08 Hours)		
		Development of the lateral surfaces of solids like prisms, pyramids, cylinders and cones.			
		and cones.			
Proj	ject Bas	ed Learning			
1.	To obt	ain industrial drawings to identify the types of lines, dimensioning methods and i	method of		
	project	tion.			
2.	To dev	velop the model/charts based on engineering curves.			
3.	To pre	pare model/chart for identification of engineering curves in nature for industrial,	societal, etc		
	applica				
4.	To der	nonstrate different methods of orthographic projection.			
5.	To der	nonstrate projection of Points.			
6.		nonstrate projection of Lines.			
7.	To der	nonstrate projection of Planes.			
8.	To der	nonstrate projection of Solids.			
9.		nonstrate developments of surfaces for solids.			
10.		monstrate industrial application of development of surfaces such as steam car	rying pipes.		
		of air conditioning systems, etc.			
11	To der	nonstrate Isometric projection method through model of a cube.			
Assi	gnment	ts: Minimum five problems on each unit in A3 size Drawing Book			
Ter	m Work	ζ			
Ter	m Work	shall consist of seven A2 size (594mm×420 mm) sheets by hand and AutoCAD.			
1	Types	of lines, Dimensioning practice, 1st and 3rd angle methods symbol.			
2	Engine	eering Curves			
3	Orthog	graphic Projections			
4	Isomet	tric views			
5	Projec	tions of Lines and planes			
6	Projec	tion of Solids			
		opment of Lateral surfaces			

Text Books/References						
1	"Elementary Engineering Drawing", N.D. Bhatt, Charotar Publishing house, An and India.					
2	"Text Book on Engineerin	"Text Book on Engineering Drawing", K. L. Narayana &P .Kannaiah, Scitech Publications,				
	Chennai.					
3	"Fundamentals of Engineeri	ng Drawing", Warren J. Luzzader, Prentice Hall of India, NewDelhi				
4	"Engineering Drawing and (Graphics", Venugopal K., New Age International publishers				
5	M.B.Shahand B.C.Rana, "En	ngineering Drawing",1st Ed,PearsonEducation,2005				
6	P.S.Gill, "Engineering Draw	ring (Geometrical Drawing)",10 Edition,S.K.KatariaandSons,2005				
Sylla	Syllabus for Unit Tests					
Unit	Unit Test I Units I, II, and III					
Unit	Unit Test II Units IV, V, and VI					

ANALYTICAL TECHNIQUES

Designation: Professional Core

Course Pre-requisites: Chemistry, Physics

Teaching Scheme		Examination Scheme		Credits Allotted	
Lecture	: 04 Hours/Week	End Semester Examination	: 60 Marks	Lecture	: 04
Practical	: 02 Hours/Week	Internal Assessment	: 40 Marks	Practical	: 01
Total	: 06 Hours/Week	Term Work	: 50 Marks	Total	: 05
		Total	: 150 Marks		

Course Outcomes

After completion of the course students will be able to

1.	Determine the need for analysis and select the method of analysis
----	---

- 2. Analyse the samples using chromatographic methods and define its content and concentration
- 3. Analyse the samples using spectroscopic methods and define its content and concentration
- 4. Analyse the samples for carbon, fluoride ion content and define its flow properties
- 5. Analyse water and fuel samples for properties and composition
- 6. Analyse the samples for surface properties and particle size

	Topics Covered				
Unit I	Introduction and basics of analysis				
	Need of analysis, Determination and Measurement, Analysis principle;				
	Classifying Analytical Techniques, Criteria of selection; Qualitative and				
	quantitative results, Accuracy, Precision, Sensitivity, Selectivity, Robustness				
	and Ruggedness, Scale of Operation, Equipment, Time, and Cost, Making the				
	Final Choice				
Unit II	Chromatographic Analysis	(08 Hours)			
	a) Gas Chromatography				
	Analysis principle; Criteria of selection; Preparation of samples; Selection of				
	eluent and detector; Temperature programming; Elution conditions;				
	Standardization and calibration; Sample analysis: Qualitative and quantitative				
	results				
	b) High Precision Liquid Chromatography				
	Analysis principle; Criteria of selection; Preparation of samples; Selection of				
	eluent and detector; Selection of elution conditions; Standardization and				
	calibration; Sample analysis: Qualitative and quantitative results				
	c) Gel Permeation Chromatography				

	Analysis principle; Criteria of selection; Preparation of samples; Selection of	
	eluent and detector; Selection of elution conditions; Standardization and	
	calibration; Sample analysis: Qualitative and quantitative results	
Unit III	Spectrographic analysis	(08 Hours)
	Analysis principle and limitations of spectroscopic analysis, calibration and	
	standardization	
	UV-visspectrophotometry:Beart- Lamberts law; Preparation of samples;	
	Dilutions; Standardization and calibration; Sample analysis: Qualitative and	
	quantitative assessment	
	Fourier Transfer Infrared Spectroscopy: Preparation of samples; KBr palate	
	formation; Film analysis; Powder analysis; Interpretation of data: Sample	
	analysis	
	Raman Spectroscopy: Principle of analysis, Importance of data, data	
	interpretation	
	X-Ray Diffraction: Principle of analysis, Importance of data, data interpretation	
Unit IV	Carbon and Fluoride Ion analysis	(08 Hours)
	Selection of methods for analysis; Preparation of samples; Standardization;	
	Analysis and interpretation	
	Viscometry analysis	
	Redwood and plate and cone type viscometers: Measurement principle; Sample	
	Analysis;	
	Nuclear Magnetic Resonance Ion analysis	
	Principle, Selection of methods of solvent, Preparation of samples;	
	Standardization; Analysis and interpretation	
Unit V	Fuel Analysis: Bomb calorimetry; Flash point analysis; Fire point analysis;	(08 Hours)
	Coal analysis: Ultimate and proximate analysis; Moisture content measurement	
	by Karl Fisher titration: Standardization and data analysis.	
	Water Analysis: Concept of Biological oxygen demand (BOD), Chemical	
	oxygen demand (COD), Total Organic Carbon (TOC) and heavy metal content	
	analysis; Sample analysis	
Unit VI	Surface and particle analysis:	(08 Hours)
	Particle size analysis: Principle; Preparation of solution or dispersion; Sample	
	analysis	
	Atomic forced microscopic analysis: Principle; AFM analysis.	
	Electron microscopic analysis: Scanning Electron microscopy, Transmission	
	electron microscopy, Energy-dispersive X-ray spectroscopy, Principle, Sample	
	election incroscopy, Energy-dispersive X-ray spectroscopy, Finiciple, Sample	

Term wo	rk will consist of the experiments listed below, out of which at least eight experiments should be
	d in laboratory by the students.
1	Viscosity analysis of oils and polymer solution
2	UV spectroscopic analysis of inorganic salts
3	Determination of concentration of solution by UV spectroscopic methods
4	GC analysis to determine organic and aqueous contents
5	HPLC analysis for determination pf PEG and salts
6	Proximate and ultimate analysis of coal
7	Calorific value measurement of fuels
8	Acid value measurement of fuels
9	FTIR analysis and determination of compatibility of polymer films
10	Electron microscopic analysis of polymer films to determine compatibility and composition
11	AFM analysis of polymer films and nanoparticle content determination
12	Particle size measurement and determination of particle size variation in given sample
13	Determination of emulsion compatibility and droplet size in given dispersion
	Based Learning:
1	Prepare a short report on food industry samples analysis
2	Group discussion on importance of analysis in pharmaceutical industry and their method
	selection
3	Collection of water samples from various locality and make its complete analysis
4	Collection of fuel samples from various sources and provide its complete analysis
5	Prepare some polymers composites and make a complete formation report with details analytical studies
6	Prepare a short report on paint industry samples analysis
7	Prepare a short report on sugar industry samples analysis
8	Prepare a short report on dairy samples analysis
9	Prepare a short report on fertilizer industry samples analysis
10	Prepare a short report on municipal corporation waste samples analysis
	ytical methods and their applications would be defined along with background information,
	and application determination, limitation and applications
	oks/ References:
1	I. M. Kolthoff, J. D. Winefordner, M. M. Bursey: Treatise on Analytical Chemistry, Part 1
	Vol. 11: Theory and Practice, 2 nd Ed., Wiley and Sons, New York, 1989
2	J. A. C. Broekaert: Analytical Atomic Spectrometry withFlames and Plasmas, Wiley-VCH
	Verlag GmbH & Co. KGaA, New York, 2002
3	G. D. Christian, P. K. Dasgupta, K. A. Schug: Analytical Chemistry, John Wiley & Sons, Inc.,

	Danvers, 2014		
4	D. Harvey: Modern Analytical Chemistry, McGraw-Hill Higher Education, Kingsport, 2000		
5	J. Mendham, A. Vogel: Vogel's Te	extbook of Quantitative Chemical Analysis, 6th Ed.,	
	Addison Wesley Publishing Co., Bosto	on, 2000	
	•		
Syllabus f	for Unit Test		
Unit Test	Unit Test I Unit – I, II, III		
Unit Test	Unit Test II Unit – IV, V, VI		

CHEMICAL ENGINEERING (SCOPE AND SIGNIFICANCE)

Designation: Professional Core

Course Pre-requisites: Chemistry and Physics

Teaching Scheme		Examination Scheme	(Credits Allot	ted
Lecture	: 04 Hour /Week	End Semester Examination : 60	Marks I	Lecture	: 04
Total	: 04 Hour /Week	Internal Assessment : 40	Marks 7	Fotal	: 04
		Total : 10	0 Marks		
Course Ou	itcomes				
1	Appraise the impor	ance of chemical engineering and r	elated proce	esses	
2	Select unit operatio	as and processes for desired applica	tion		
3	Justify the importar	ce of chemical engineering in Petro	leum and P	etrochemical	industries
4	Justify the importar	ce of chemical engineering in Food	l and Pharm	aceutical indu	ustries
5	Justify the importar	ce of chemical engineering in agric	ultural indu	stries	
6	Design a pathway	o face todays and upcoming chal	lenges using	g knowledge	of chemica
	engineering				
		Topics Covered			
UNIT - I	Introduction				(06 Hours
	-	ing: Origin and development; D			
	Engineering Major				
		components and scope of Chemica	-	-	
	Chemical Engineer	in Chemical and allied industries;	-	-	
	Chemical Engineer and national econor	in Chemical and allied industries;	-	-	
UNIT - II	Chemical Engineer and national econor Unit operations an	in Chemical and allied industries; ny d Unit processes	Chemical I	Engineering	(06 Hours
UNIT - II	Chemical Engineer and national econor Unit operations an Definition of unit of	in Chemical and allied industries; y d Unit processes perations and unit processes; Unit	Chemical I operations:	Engineering fluid flow,	(06 Hours
UNIT - II	Chemical Engineer and national econor Unit operations an Definition of unit of heat and mass trans	in Chemical and allied industries; ny d Unit processes perations and unit processes; Unit fer, and mechanical operations; Ur	Chemical I operations: nit processes	Engineering fluid flow, s: Addition,	(06 Hours
UNIT - II	Chemical Engineer and national econor Unit operations an Definition of unit of heat and mass trans condensation, subst	in Chemical and allied industries; ny d Unit processes perations and unit processes; Unit fer, and mechanical operations; Unit itution; Application of unit operation	Chemical I operations: nit processes	Engineering fluid flow, s: Addition,	(06 Hours
	Chemical Engineer and national econor Unit operations an Definition of unit of heat and mass trans condensation, subst industrial case studi	in Chemical and allied industries; y d Unit processes perations and unit processes; Unit fer, and mechanical operations; Un itution; Application of unit operations es.	Chemical I operations: nit processes	Engineering fluid flow, s: Addition,	
	Chemical Engineer and national econor Unit operations an Definition of unit of heat and mass trans condensation, subst industrial case studied Petroleum and Pet	in Chemical and allied industries; ny d Unit processes perations and unit processes; Unit fer, and mechanical operations; Un itution; Application of unit operations. es. rochemical Industry	Chemical I operations: nit processes ons and uni	Engineering fluid flow, s: Addition, t processes:	(06 Hours (06 Hours
UNIT - II UNIT - III	Chemical Engineer and national econor Unit operations an Definition of unit of heat and mass trans condensation, subst industrial case studion Petroleum and Pet Overview of petro	in Chemical and allied industries; y d Unit processes perations and unit processes; Unit fer, and mechanical operations; Unit itution; Application of unit operations es. rochemical Industry eum and petrochemical industry;	Chemical I operations: nit processes ons and uni Major petr	Engineering fluid flow, s: Addition, t processes: roleum and	
	Chemical Engineer and national econor Unit operations an Definition of unit of heat and mass trans condensation, subst industrial case studion Petroleum and Pet Overview of petro petrochemical proc	in Chemical and allied industries; by d Unit processes perations and unit processes; Unit fer, and mechanical operations; Unit itution; Application of unit operations es. rochemical Industry eum and petrochemical industry; ucts; Unit operations and process	Chemical I operations: nit processes ons and uni Major petr	Engineering fluid flow, s: Addition, t processes: roleum and	
UNIT - III	Chemical Engineer and national econor Unit operations an Definition of unit of heat and mass trans condensation, subst industrial case studi Petroleum and Pet Overview of petro petrochemical proo petrochemical indus	in Chemical and allied industries; by d Unit processes perations and unit processes; Unit fer, and mechanical operations; Unit itution; Application of unit operations es. rochemical Industry eum and petrochemical industry; ucts; Unit operations and process try; Economical impact.	Chemical I operations: nit processes ons and uni Major petr	Engineering fluid flow, s: Addition, t processes: roleum and	(06 Hours
	Chemical Engineer and national econor Unit operations an Definition of unit of heat and mass trans condensation, subst industrial case studi Petroleum and Pet Overview of petro petrochemical proc petrochemical indus	in Chemical and allied industries; by d Unit processes perations and unit processes; Unit fer, and mechanical operations; Ur itution; Application of unit operations es. rochemical Industry eum and petrochemical industry; ucts; Unit operations and process try; Economical impact. reutical Industry	Chemical I operations: nit processes ons and uni Major petr sses in petr	Engineering fluid flow, s: Addition, t processes: roleum and roleum and	
UNIT - III	Chemical Engineer and national econor Unit operations and Definition of unit of heat and mass trans condensation, subst industrial case studi Petroleum and Pet Overview of petro petrochemical proo petrochemical indus Food and Pharma Overview of food a	in Chemical and allied industries; by d Unit processes perations and unit processes; Unit fer, and mechanical operations; Unit itution; Application of unit operations es. rochemical Industry eum and petrochemical industry; ucts; Unit operations and process try; Economical impact.	Chemical I operations: nit processes ons and uni Major petr sses in petr operations	Engineering fluid flow, s: Addition, t processes: roleum and roleum and	(06 Hours

UNIT - V	Agro-chemical Ind	lustry	(06 Hours)
	Significance of agr	ro-chemicals; Role of chemical engineer in synthesis of	
	agro-chemicals; Va	lue added products: biofertilizers, biofuel, bioadsorbents,	
	etc.; Fertilizers, p	esticides, herbicides, crop growth enhancers, etc.; Social	
	and economical imp	portance of agricultural chemicals	
UNIT - VI	Chemical Enginee	ring and challenges	(06 Hours)
	(i) Energy: Sources	s of energy and constraints; Need for renewable energy	
	(ii)Air: Sources of a	air pollution; Air quality parameters; Air pollution control	
	(iii)Water: Water	quality parameters; Water recycle and reuse; Water	
	treatment methodol	ogies	
	Role of Chemical	Engineer in Energy, Air and Water sectors; Economical	
	impact.		
Text Books	/ References:		
1	Watcher:Kirk Othr	ner Encyclopaedia of Chemical Technology, 4th Ed, Jon	h Wiley and
	Sons, New York, 20	000	
2	F.Ullmann: Ullman	nn's Encyclopaedia of Industrial Chemistry, 16 th Ed,	Wiley VCH,
	Edinberg, 2016		
3	R. H. Perry, D. W	7. Green: Perry's Chemical Engineering's Handbook, 9th I	Ed., McGraw
	Hill, New York, 20	18	
4	I. D. Wilson: Encyc	clopaedia of Separation Science,3 rd Ed., Wiley VCH Edinber	g, 2007
5	R.Trebal: Mass Tra	nsfer operations, McGraw Hill Publications 1997	
6	McCabe, Smith,	Harriot: Unit Operations of Chemical Engineering, M	IcGraw Hill
	Publications, 1997		
Syllabus for	r Unit Test:		
Unit Test	: I	Units : I, II, and III	
Unit Test	: II	UNIT : IV, V, and VI	

COMMUNICATION SKILLS

Designation: Humanities/Social and Management

Pre-requisite Courses: Basic English grammar, Basic information of sound system of English language.

Teaching Scheme		Examination Scheme		Credits Allo	Credits Allotted	
Practical	: 02 Hours/Week	Term Work	: 50 Marks	Practical	: 01	
Total	: 02 Hours/Week	Total	: 50 Marks	Total	: 01	

Course Outcomes

1 Understand and construct the error free sentences of English language and do implementation of it in the spoken and written business communication

2 Understand and apply the sounds of English language for correct pronunciation

3 Understand and develop the ability to enhance sound vocabulary for effective communication

4 Understand communication process and principles to do applications in business communication

5 Understand the techniques of writing skills and apply them in appropriate context and domain

6 Create effective business presentation and do effective implementation of it through activities

	Topics Covered	
UNIT-I	English grammar	(04 Hours)
	Application of Basic Grammar: Articles, Prepositions, Tenses, Subject-verb	
	agreement, Use of phrases & Clauses in sentences, Common errors	
UNIT-II	Phonetics/study of sounds in English	(04 Hours)
	Introduction to phonetics, study of speech organs, study of phonetic script,	
	transcriptions of words, articulation of different sound in English, reducing	
	MTI, stress and intonation	
UNIT-III	Vocabulary Enrichment	(04 Hours)
	Ways of word formation, Foreign phrases, One word substitutions, Synonyms	
	& antonyms, Words often confused, Indian English words, Usage of idioms	
	& phrases. GRAS-PT formula	
UNIT-IV	Communication Skills	(04 Hours)
	Introduction, forms and function of communication process, non-verbal codes	
	in communication, Importance of listening skills, Listening V/s hearing,	
	Types of listening, Barriers to communication and listening, Importance of	
	LSRW skills in communication	
UNIT-V	Presentation skills	(04 Hours)
	Designing effective presentation, understanding theme, developing content	

UNIT-VI		 and layout of presentation, use of tone and language, technological tools for effective presentation Technical Writing Skills The mechanics and principles of written communication, Technical Communication, Need and Importance, technical report writing;, email writing, , notice, agenda, minutes of meeting writing. Use of technology in technical writing 						
					Text	t Books	/References	
					1		ess Communication by Meenakshi Raman, Prakash Singh published by Oxfor	d University
-		second edition,	a emiterency					
2			published by					
-	Orient Blackswan		puonsneu oj					
3		ical Communication by Meenakshi Raman, Sangeeta Sharma published by Oxfor	d University					
4	1	oping Communication Skills by Krishna Mohan, Meera Banerji published by	Macmillan					
		Pvt Ltd	,					
F	Recomn	nended web-links for enhancing English language and business communication						
		ww.bbc.co.uk/worldservice/learningenglish						
	-	ww.englishlearner.com/tests/test.html						
	-	ww.hodu.com/default.html						
h	nttp://wv	ww.communicationskills.co.in/index.html						

COMPUTER PROGRAMMING - I

Designation: Skill Based

Pre-requisite Courses: Basic knowledge of computers

Teaching Scheme		Examination Scheme		Credits All	Credits Allotted	
Practical	: 04 Hours/Week	Term Work	: 25 Marks	Practical	: 02	
Total	: 04 Hours/Week	Oral	: 25 Marks	Total	: 02	
		Total	: 50 Marks			

Cou	rse Outc	romes	
1	Apply	the knowledge of constant, variables, data types and various standard input output functions	
	to write	e C-programs.	
2	Design a flow chart and write C-programs using control constructs and looping statements and		
	arrays.		
3	Develo	pp C-programs using string and pointers.	
4	Elucida	ate the basic concepts of Data structure	
5	Clarify	dynamic store management.	
6	Plot gr	aphs using C- Programming	
		Topics Covered	
UNI	Г-І	C-Programming Language	
		Introduction; Character sets; Constant; Variables and Data Types: integer, float, double,	
		char, string; Operators: arithmetic, relational, logical, increment and decrement,	
		assignment, conditional; Standard input-output functions: printf (), scanf (), getch () or	
		getchar();Programs using if statement, if-else statement, goto statement, etc.; Programs	
		based on standard input-output functions used in C-Programming.	
		1. Programs based on if-else statements.	
		2. Programs based on goto statements.	
3. Programs based on switch		3. Programs based on switch-case statements	
UNI	Г-II	Loops and Arrays	
		Programs using while loop; do-while loop and for loop; Single dimensional and multi-	
		dimensional arrays.	

- 4. Programs based on while loop.
- 5. Programs based on do-while loop.
- 6. Programs based on for loop.
- 7. Write algorithm and flowchart for array.

	8. Programs based on single dimensional arrays.
	9. Programs based on multi-dimensional arrays.
UNIT-III	String and Pointers
	Programs using string; String functions: strlen()/ strcpy()/ strrev()/ strcat ()/strlwr ()/
	strupr ()/ strcmp (); Programs using pointers; Use of * and & operators; Pointer
	arithmetic's; Use of pointers; Pointer and function: parameter passing to function by
	reference and by value; File handling; Linked list.
	10. Programs based on strings and string functions.
	11. Programs based on pointers and function.
UNIT-IV	Introduction to data structures
	Storage structure for arrays; Sparse matrices, Stacks and Queues: Representation and
	application; Linked lists: Single linked lists, linked list representation of stacks and
	Queues; Operations on polynomials; Double linked list; circular list.
	12. Programs based on Array implementation of stack and queues.
	13. Programs based on Linked list implementation of stack and queues
UNIT-VI	Dynamic storage management
	Garbage collection and compaction; Infix to post fix conversion; postfix expression
	evaluation; Trees: Tree terminology, Binary tree, Binary search tree.
	14. Programs based on checking balanced parentheses in an expression.
	15. Programs based on implementation of tree and tree traversal.
	16. Programs based on implementation of binary search tree.
UNIT-VI	Graphs:
	Graph terminology; Representation of graphs; path matrix; BFS (breadth first search);
	DFS (depth first search); Topological sorting; Warshall's algorithm (shortest path
	algorithm.); Sorting and Searching techniques : Bubble sort, selection sort, Insertion sort,
	Quick sort, merge sort, Heap sort, Radix sort. Linear and binary search methods.
	17. Programs based on bubble sort, insertion sort, quick sort, merge sort
	18. Programs based on implementation of linear and binary search methods
In addition t	o these above stated programs / practical's concern faculty member may design his/her own
programs / p	ractical's.
Term Work	
Term work	will consist of the programs/practical's listed above, out of which any ten
programs/pr	actical's are to be performed in laboratory by the students.
Text Books	References
1	Y. C. Kanetkar, Let Us C, 15 th edition, BPB Publications, New Delhi, 2016.
2	M. Cooper, The Spirit of 'C': An Introduction to Modern Programming, First edition ,
	Jaico Publishing House, 1998

3	Rajaraman V, Adabala N, Fundamentals of Computers, 6th edition, Prentice Hall India
	Learning Private Limited, 2014.
4	R. Thareja, Data Structures Using C, 2 nd edition, Oxford University Press India, 2014.
5	A. N. Kamthane, Introduction to Data Structures in C, Pearson India, 2010
6	A. K. Sharma, Data Structure Using C, Pearson India, 2010

Programme: B. Tech. Chemical (2023 Course) Semester- II (Chemical)

	E	CNGINEERING MATHEM	ATICS -II		
Designatio	on: Basic Science				
Pre-requis	site Courses: Different	tial calculus			
Teaching	Scheme	Examination Scheme		Credits Allo	tted
Lecture	: 03 Hours/Week	End Semester Examination	: 60 Marks	Lecture	: 03
Tutorial	: 01 Hours/Week	Internal Assessment	: 40 Marks	Tutorial	: 01
Total	: 04 Hours/Week	Total	: 100 Marks	Total	: 04
 Apply of Solve i Solve i Determ 	lifferential equations by	Simple Harmonic Motion, On ourier series. rror functions. cometry.	e–Dimensional	Conduction of	È Heat.
		Topics Covered			
UNIT-I	Differential Equat	ion of First Order and First	Degree		(06 Hours)
	Definition, Order an	nd Degree of DE, Formation	of DE, Solution	s of Variable	
	-	t DE, Linear DE and reducibl	e to these types	•	
UNIT-II	••	fferential Equations			(06 Hours)
		E to Orthogonal Trajectories,		0	
		Electrical Circuits, Motion			
	Motion, Simple Har	monic Motion, One–Dimensi	onal Conductio	n of Heat.	

UNI	T-III	Fourier Series	(06 Hours)
		Definition, Dirichlet's conditions, Fourier Series and Half Range Fourier	
		Series, Harmonic Analysis.	
UNI	T-IV	Integral Calculus	(06 Hours)
		Reduction formulae, Beta and Gamma functions, Differentiation under the	
	Integral Sign, Error functions		
UNIT-V Solid Geometry		Solid Geometry	(06 Hours)
		Cartesian, Spherical Polar and Cylindrical Coordinate Systems, Sphere, Cone	
		and Cylinder.	
UNI	T-VI	Multiple Integrals and their Application	(06 Hours)
		Double and Triple integrations, Applications to Area, Volume, Mean and	
		Root Mean Square Values	
			1
Proj	ect Bas	ed learning	
1	Forma	tion of differential equation	
2	Exact differential Equation		
3	Linear	differential equation	
4	Newto	n's law of cooling	
5	Newto	n's second law of motion	
6	Fourie	r's law	
7	Kirchł	off's voltage law	
8	Fourier series		
9	Harmo	onic analysis	
10	Gamm	a and beta function	
11	Reduc	ction formulae	
12	Locating position in three dimensional space		
13	Multiple integrals applications		
14	Error f	unction	
15	Differe	entiation under integral sign	

Text Books/References					
Applied Mathematics (Volumes I and II) by P. N. Wartikar & J. N. Wartikar (Pune Vidyarthi					
GrihaPrakashan, Pune),7thEdition,1988,Reprint 2010					
Higher Engineering Mathem	natics by B.S. Grewal (KhannaPublication, Delhi), 42th Edition, 2012				
Higher Engineering Mathem	natics by B.V. Ramana (Tata McGraw-Hill), Edition, 2008				
Advanced Engineering Math	nematics by Erwin Kreyszig (Wiley Eastern Ltd.), 8th				
Edition, 1999, Reprint 2010					
Advanced EngineeringMathe	ematics,7e,byPeterV.O'Neil(ThomsonLearning),Edition 2007				
Advanced Engineering Mathematics, 2e,byM.D.Greenberg(Pearson Education),2nd,Edition, 2002					
Syllabus for Unit Tests					
Unit Test I Units I, II, and III					
Test II	Units IV, V, and VI				
	Applied Mathematics (Volu GrihaPrakashan, Pune),7thE Higher Engineering Mathem Higher Engineering Mathem Advanced Engineering Math Edition,1999,Reprint2010 Advanced EngineeringMath Advanced Engineering Math bus for Unit Tests Test I				

ENGINEERING PHYSICS

Designation: Basic Science

Pre-requisite Courses: Basic physics and calculus.

Teaching Scheme		Examination Scheme		Credits Allotted	
Lecture	: 03 Hours/Week	End Semester Examination	: 60 Marks	Lecture	: 03
Practical	: 02 Hours/Week	Internal Assessment	: 40 Marks	Practical	: 01
Total	: 05 Hours/Week	Term Work	: 50 Marks	Total	: 04
		Total	: 150 Marks		

Course Outcomes

Analyze the properties of charged particles to develop modern instruments such as electron 1 microscopy.

2 Understand the problems associated with architectural acoustics and give their remedies and use ultrasonic as a tool in industry for non destructive testing.

Apply quantum physics problems to micro level phenomena and solid state physics. 3

4 Understand the wave nature of light and apply it to measure stress, pressure and dimension etc.

Apply the principles of lasers and fiber optics for applications in the field of engineering. 5

6 Remember properties of solid matter and connect to applications in the field of engineering.

Topics Covered UNIT-I **Modern Physics** (06 Hours) Motion of a charged particle in electric and magnetic fields, Electrostatic and Magnetostatic focussing, Electron microscopy, interaction of electron beam with the material, Wavelength and resolution, transmission electron microscope (TEM), scanning electron microscope (SEM), Separation of isotopes by Bainbridge mass spectrograph, cathode ray tube (CRT), CRT in cathode ray oscilloscope (CRO).

UNIT-II	Architectural Acoustics	(06 Hours)
	Elementary acoustics, Reverberation and reverberation time, Sabine's formula	
	(without Derivation), Intensity level, Sound intensity level, Loudness, Sound	
	absorption, Sound absorption coefficient, different types of noise and their	
	remedies, basic requirement for acoustically good hall, factors affecting the	
	architectural acoustics and their remedies, introduction to ultrasonics,	
	Production of ultrasonics by magnetostriction and piezoelectric methods,	
	applications (thickness measurement, flaw detection).	
UNIT-III	Quantum mechanics	(06 Hours)
	Dual nature of matter, concept of wave packet, group and phase velocity and	
	relation between them, physical significance of wave function, Schrodinger's	
	time dependant and time independent wave equation, Application of	
	Schrodinger's time independent wave equation to the problems of Particle in	
	a rigid box, concept of tunnelling at potential barrier (no derivation-only	
	conceptual discussion).	
UNIT-IV	Optics – I (Interference and Diffraction)	(06 Hours)
	Interference: Interference due to thin film of uniform thickness and	
	nonuniform thickness, engineering applications of interference (optical	
	flatness, non-reflecting coatings).	
	Diffraction: Diffraction at a single slit (Geometrical method), Conditions for	
	maximum and minimum, Diffraction at a circular aperture (Result only),	
	Plane diffraction grating, Conditions for principal maxima and minima.	
UNIT-V	Optics – II (Polarisation and Lasers)	(06 Hours)
	Polarisation: Introduction, Double refraction and Huygen's theory, Positive	
	and negative crystals, Nicol prism.	
	Lasers: Lasers introduction, Characteristics of Lasers, Working principle and	
	components of He-Ne Laser, Nd -YAG Laser, Semiconductor diode Laser,	
	Applications in the field optical fiber (Principle, Acceptance angle and	
	acceptance cone, Numerical aperture, Types of optical fibers, Fiber optic	

UNI	T-VI	Solid State Physics	(06 Hours)
		Origin of band gap, Energy bands in solids, Fermi-Dirac probability function	
	and position of Fermi level in intrinsic semi-conductors (with derivation) and		
	in extrinsic semi-conductors, Formation and band structure of p-n junction,		
	Hall effect and Hall coefficient.		
	Introductions of nanoparticles, properties of nanoparticles (Optical, electrical,		
	Magnetic, structural, mechanical), synthesis of nanoparticles (Physical and		
	chemical), quantum dots – wide band semiconductors, direct/indirect band		
		gap semiconductors.	
•	1	ed Learning Topics	
1	Tesla Coil		
2	Thin film interference in soap film-formation of colors		
3	LiFi- wireless data transfer system using light		
4	Need of medium for propagation of sound wave		
5	Possible effects of electromagnetic fields (emf) on human health		
6	Design and simulation of automatic solar powered time regulated water pumping		
7	Solar technology: an alternative source of energy for national development		
8	Measurement and effect of environmental noise in the college		
9	Electronic eye (Laser Security) as auto-switch/security system		
10	Electric power generation by road		
11	Design and construction of distance measuring instrument using LASER		
12	Design and construction of remote control devices – electronic bell, Fan etc		
13	Absorption coefficient of sound absorbing materials		
14	Velocity determination of O-ray and E-ray in double refracting materials		
15	Velocity determination of O-ray and E-ray in double refracting materials		
16	The design and construction of the hearing aid device		
17	Study of Quantum confinement effect		
18	Wind turbines - a source of electricity		

19	Measurement of gravitational constant 'g'
Prac	tical (Any Eight of the Following)
1	Determination of radius of planoconvex lens/wavelength of light/Flatness testing by Newton's rings
2	Determination of wavelength of light using diffraction grating
3	Determination of frequency of ac voltage by CRO.
4	Determination of refractive index for O-ray and E-ray
5	Determination of divergence of a laser beam
6	Particle size by semiconductor laser
7	Determination of wavelength of laser by diffraction grating
8	To study Hall effect and determine the Hall voltage
9	Calculation of conductivity by four probe method
10	Study of solar cell characteristics and calculation of fill factor
11	Determination of band gap of semiconductor
12	Synthesis of metal oxide nanoparticles (ZnO/ZnS/silver/Gold)
13	Measurement of average SPL across spherical wavefront and behaviour with the distance
14	Determination of velocity of sound in liquid by ultrasonic interferometer
15	Study of B-H curve of a sample
16	Determination of Plank's constant
Text	Books
1	A Textbook of Engineering Physics, M N Avadhanulu, P G Kshirsagar and TVS Arun Murthy, S
	Chand Publishing (2018)
2	Engineering Physics, R K Gaur and S L Gupta, Dhanpat Rai Publishing Co Pvt Ltd (2015)
3	Concepts of Modern Physics, Arthur Beiser, Shobhit Mahajan and S. Rai Choudhury, McGraw
	Hill Education (2017)
Refe	rences
1	Fundamentals of Physics, Jearl Walker, David Halliday and Robert Resnick, John Wiley and Sons

	(2013)			
2	Optics, Francis Jenkins and Harvey White, Tata Mcgraw Hill (2017)			
3	Principles of Physics, John W. Jewett, Cengage publishing (2013)			
4	Introduction to Solid State Physics, C. Kittel, Wiley and Sons (2004)			
5	Principles of Solid State Physics, H. V. Keer, New Age International (1993)			
6	Laser and Non-Linear Optics, B. B. Laud, New Age International Private Limited (2011)			
7	Nanotechnology: Principles and Practices, Dr. S. K. Kulkarni, Capital Publishing Company (2014)			
8	Science of Engineering Materials- C.M. Srivastava and C. Srinivasan, New Age International Pvt.			
	Ltd. (1997)			
Syllabus for Unit Tests				
Unit	Test I	Units I, II, and III		
Unit	Test II	Units IV, V, and VI		

BIOLOGICAL SCIENCES

Designation: Professional Core

Pre-requisite Courses: Biology and Chemistry

Teaching S	cheme	Examination Scheme		Credits Allotted	
Lectures	: 04 Hours/Week	End Semester Examination	: 60 Marks	Lecture	: 04
Practical	: 02 Hours/ Week	Internal Assessment	: 40 Marks	Practical	: 01
Total	: 06 Hours / Week	Term Work	: 50 Marks	Total	: 05
		Total	: 150 Marks		

Course Outcomes:

After completion of the course students would be able to:

1 Identify the microorganism and its structure.

2 Learn the basics of biochemistry.

3 Analyze the enzyme technology with different aspects.

4 Identify the biomaterials and their applications.

5 Learn the concept of Biodiversity and applications of biological science.

6 Analyze the Bio safety framework in India.

Topics covered

UNIT-I	Molecular Cell Biology		
	Introduction to cell; Eukaryotes and prokaryotes; Classification of		
	microorganisms and important cell types; Structures of the bacterial cell;		
	Classification and Identification of microorganisms; Cultivation of bacteria;		
	Reproduction and growth.		
UNIT-II	Biochemistry	(06 Hours)	
	Biological oxidations; Photosynthesis; Carbohydrates, lipids and their		
	metabolism; Structure of biomolecules; Intra and intermolecular forces;		

	Introduction to kinetics of biological systems.			
UNIT-	II Enzymes for Life Sciences	(06 Hours)		
	Classification of enzymes; Specificity of enzyme action; Factors modifying			
	enzyme activity; Biotechnological applications of enzymes in various			
	industries; Enzyme Immobilization.			
UNIT-	Bio-materials			
	Classification of biomaterials; Comparison of properties of some common			
	biomaterials; Effects of physiological fluid on the properties of			
	biomaterials;Biodegradable materials; Introduction to bio-materials in			
	medicine.			
UNIT-	W Biodiversity and Applications of Biological science	(06 Hours)		
	Components of Biodiversity; Biodiversity crisis and biodiversity loss;.			
	Importance of biodiversity in daily life; Biodiversity and climate change;			
	Biofuel; Bio fertilizers; Biocides; Application in food industry.			
UNIT-	VI Biosafety-regulatory Framework in India	(06 Hours)		
	Food Adulteration Act (1955), Standard safety methods for handling			
	microorganisms; National Environment Policy (2006); Storage of hazardous			
	microorganisms/genetically engineered organisms or cells; Case studies for			
	handling of various microorganisms.			
Text B	ooks/References:			
1 B	ruce A. Alexander J. Julian L., Martin R. Keith R. and Peter W.: "Molecular Biology	of the Cell",		
51	h Edition, CRC Press, India.			
2 P	ul D.: "Physics in Biology and Medicine", 3rd Edition, Academic Press, USA.	D.: "Physics in Biology and Medicine", 3rd Edition, Academic Press, USA.		
3 C	n R. Bjorn K. : "Basic Biotechnology", 3rd Edition, Cambridge University Press,UK			
Term V	Vork			
Term w	ork will consist of the experiments listed below, which are to be performed in labor	ratory by the		
student	S.			
1 E	nzvme catalysis	yme catalysis		

2	Enzyme activity assay				
3	Yeast fermentation				
4	Enzyme concentration				
5	Substrate concentration effect on enzyme activity				
6	Temperature effect on enzyme activity				
7	Effect of pH on enzyme activity				
8	Effect of inhibitors on the enzymatic activity				
9	Effect of inhibitors on the enzyme activity				
Syllabus for Unit Test:					
Unit	Test : I	Units : I, II, and III			
Unit	Test : II	UNIT : IV, V, and VI			

MECHANICAL OPERATIONS

Designation: Professional Core

Pre-requisite Courses: None.

Teaching Scheme		Examination Scheme		Credits Allotted	
Lecture	: 04 Hours/Week	End Semester Examination	: 60 Marks	Lecture	: 04
Practical	: 02 Hours /Week	Internal Assessment	: 40 Marks	Practical	: 01
Total	: 06 Hours /Week	Term Work	: 50 Marks	Total	: 05
		Total	: 150 Marks		

Course Outcomes: After completion of the course students will be able to

2 To select suitable type of thickeners and clarifiers for separation of suspended solid particles from liquid for example applications in Wastewater treatment plants.

3 To apply beneficiation techniques in Chemical Industries.

4 To select a suitable type of conveyor for transportation of different types of solids

5 To select a suitable type of agitator for mixing and agitation and to estimate power consumption in mixing and agitation.

6 To select a suitable type of filter for filtration of a slurry or a suspension.

Topics Covered

UNIT-I	Screening and Size Reduction of Solids	(08 Hours)
	Properties of solids; Performance of screening equipment; Testing sieves;	
	Tyler standard sieve series; Sieve shaker; Types of screen analysis; Necessity	
	of size reduction; Crushing efficiency; Energy requirement calculations by	
	using crushing laws; Classification of size reduction equipment: Crushers,	
	Grinders, Ultrafine grinders, Cutters, Dry versus wet grinding; Open and	
	closed circuit grinding.	

UNIT-I	Settling and Sedimentation	(08 Hours)	
	Motion of particle in fluid; Drag force; Drag coefficient; Gravity settling		
	methods; Terminal falling velocity; Stoke's law and Newton's law of		
	settling; Gravity sedimentation operations; Sedimentation test; Kynch		
	theory; Determination of thickener area and depth of thickener; Thickeners,		
	Clarifiers, Sedimentation centrifuges.		
UNIT-I	I Beneficiation Equipment	(08 Hours)	
	Froth flotation; Magnetic separator; Scrubbers; Electrostatic precipitators:		
	Mineral jig: Cyclone separator: Hydro cyclone types and centrifuges.		
UNIT-I	V Handling and Conveying of Solids	(08 Hours)	
	Storage of solids; Characteristics of bulk solids; Conveyors: Principle,		
	Construction and Working, Advantages, Disadvantages and Design		
	calculations of Belt Conveyors, Screw conveyors, Chain & Flight conveyors,		
	Bucket elevators and Pneumatic conveyors.		
UNIT-V	Mixing and Agitation	(08 Hours)	
	Types of Impellers; Flow patterns in un-baffled and baffled tanks; Draft		
	tube; Mechanically agitated vessel; Power requirement in mixing;		
	Performance of mixers; Paste and viscous material mixing; Solid-solid		
	mixing; Batch and continuous mixers; Agitator selection.		
UNIT-V	I Filtration	(08 Hours)	
	Classification of filtration and filters; Theory of filtration-equations; Filter		
	media and filter aids; Batch and continuous filters; Plate and frame filter		
	press; Filling and washing in a filter press; Horizontal pressure leaf filters;		
	Rotary drum vacuum filters; Fabric filter: Centrifugal filters-basket type.		
List of H	Experiments:		
Term wo	ork will consist of the experiments listed below, of which at least eight should be	performed in	
laborator	ry by the students.		
1 T	determine effectiveness of given set of standard screen.		
2 T	determine energy consumption and crushing law constants for jaw crusher.		

3	To determine Critical speed of Ball mill & Average particle size of the product obtained in ball
	mill.
4	To determine mixing Index of a mixture in Ribbon Blender. OR To determine mixing Index of
	mixture in Sigma Mixer.
5	To determine filter medium resistance and cake resistance by using Vacuum Leaf filter.
6	To determine filter medium resistance and cake resistance by using Plate & frame Filter Press OR
	by using centrifuge machine.
7	To determine area of batch thickener by conducting batch sedimentation test.
8	To determine separation efficiency by using froth flotation cell.
9	To determine separation efficiency by using magnetic separator.
10	To determine efficiency of Cyclone separator.
Proje	ect Base Learning :
1	What is surface loading rate explain in brief. The flow into clarifier is 3.2 MGD in tank 80 feet
	long and 40 feet wide. What is surface loading rate?
2	Research on Recent trends in particle size technology.
3	Watch the NPTEL video on this subject of any TWO modules and summarize it
4	Solve numerical problems asked in previous THREE year question papers.
5	Solve questions asked on filtration in previous THREE year question papers.
6	If your particles are not spherical which equivalent particle size would be suitable to calculate for
	the purpose of filtration
7	What media are used in filters? What factors affect filter efficiency?
8	How does sedimentation fit in to the waste water treatment process?
9	What zones are present in sedimentation basin?
10	How is sedimentation sludge disposed of?
11	Pilot scale solid-liquid fluidization: Expansion characteristics of solids
12	Estimate power consumption for homogeneous system
13	Industry related unit operation (ANY ONE INDUSTRY) detailing of it.
14	How does filtration fit into the water treatment process?
15	How Does Filtration clean water?

16	What types of filters are u	used for water treatment? Explain in brief			
Text	Books/References				
1	McCabe, W. L.; Smith,	McCabe, W. L.; Smith, J. C. and Harriott, P.; Unit Operations of Chemical Engineering, 6th			
	edition, McGraw Hill Put	plications.			
2	Coulson, J.M.; Richardso	n, J. F.;Backhurst, J. R.; Harker, J. H.; Chemical Engineering Volume 2,			
	6 th edition, Pergamon Press.				
3	Badger W. L &Banchero J.T. "Introduction to Chemical Engineering", McGraw Hill				
4	Foust A. S "Principles of Unit Operation".				
5	George G. Brown, "Unit operations", CBS publishers and distributors.				
Sylla	Syllabus for Unit Test:				
Unit 7	Гest -I	UNIT – I ,II,III			
Unit 7	Unit Test -II UNIT – IV,V,VI				

MATERIAL AND ENERGY BALANCE CALCULATIONS

Designation: Professional Core

Course Pre-requisites: Basic chemistry

Tea	ching S	Scheme	Examination Scheme		Credits Allot	ted
Lect	ure	: 04 Hours/Week	End Semester Examination	: 60 Marks	Lecture	: 04
Tota	.1	: 04 Hours/Week	Internal Assessment	: 40 Marks	Total	: 04
			Total	: 100 Marks		
			1			
Cou	rse Ou	tcomes:				
Afte	r comp	letion of the course stu	dents will be able to			
1	Elabo	rate the concept of unit	s and dimensions and solve the	e problems on b	asic chemical c	alculations.
2	Estim	ate material balance ca	alculations without chemical r	eaction for the	systems involve	ed in various
	unit o	perations.				
3	Estim	ate material balance calculations involving chemical reaction for the unit processes carried out in				
	chem	ical industry.				
4	Elabo	rate the concept of	recycle, bypass, purge op	perations and	solve problem	s based on
	humic	dification, recycle, bypa	ass and purge operations.			
5			gy balance and solve numerica	l based on energ	gy balance calc	ulations.
6	-		fic values of fuel and solve the			
			Topics covered			
UNI	T-I	Basic Chemical Cal	culations			(08 Hours)
		Units and dimension	ons;Mole, atomic mass, and	molar mass	concept; Gas	
		mixtures; Gas -liqu	id mixtures; Joule Thomson	n effect; Basic	composition	
		calculations for home	geneous two phase and three j	phase systems.		
UNI	T-II	Material Balances w	vithout Chemical Reactions			(08 Hours)

	Generalized law of conservation of mass; Mass conservation without chemical		
	reaction; Mass balances for unit operations encountered in chemical process		
UNIT-III	Material Balances involving Chemical Reactions	(08 Hours)	
	Generalization of law of conservation of mass involving chemical reaction and		
	its simplification; Chemical equations and stoichiometry; Basic concepts:		
	conversion, yield, selectivity; Material balance for unit processes encountered in		
	chemical process industry: nitration, esterification, acylation, sulfonation etc.		
UNIT-IV	Recycle, Bypass and Purge Operations	(08 Hours)	
	Necessity of recycle, bypass and purge streams; Basic calculations of recycle,		
	bypass and purge streams for unit operations and unit processes; Industrial		
	examples of recycling, bypassing and purging with complete mass balance viz.		
	biofuel synthesis, food processing etc.; Humidification operation.		
UNIT-V	Energy Balance	(08 Hours)	
	Basic concepts; Heat capacity; Sensible heat and latent heat: Clausius-Clapeyron		
	equation; Standard heat of formation, combustion and reaction; Hess's law;		
	General equation of energy balance; Energy balance approach and calculations		
	for exothermic and endothermic reactions with industrial examples; Steam table		
	and its utility; Utility energy balance calculations; Simultaneous heat and energy		
	balance.		
UNIT-VI	Fuels and Combustion	(08 Hours)	
	Types of fuels: solid, liquid and gas; Calculations of energy content of fuel;		
	Analysis of fuel; Oxygen requirement and excessity; Adiabatic flame		
	temperature calculations; Endothermic and exothermic reaction; Energy analysis		
	and calculations.		
Assignmen	it:		
1. Mass	and energy balance for any one of following unit operations for given system.		
a) Dis	tillation		
b) Eva	aporation		

	c) Extraction
	d) Crystallization
	e) Drying. etc
2.	Mass and energy balance for any one of following unit processes for given system. These assignment
	may include overall energy and/or mass balance or energy and/or mass balance over a given chemical
	process equipment.
	a) Nitration
	b) Esterification
	c) Acylation
	d) Fermentation
	e) Sulfonation etc.
3.	Students have to visit chemical industry and prepare a detailed report on various unit operations and
	unit processes used in industry.
4.	Measurement of calorific values of any two types of fuel.
5.	Group discussions on mass and energy balance for unit operations and unit processes carried out in
	chemical industry.
6.	Solve last five years GATE question papers with reference to particular topic.
7.	Students have to study any five NPTEL videos related to Material and Energy Balance Calculations
	and prepare/present power point presentation.
8.	Numerical based on above six units.
9.	Technical interview based on knowledge of Material and Energy Balance Calculations.
10	Prepare models for recycle, bypass and purge operations carried out in chemical industry.
11.	With the help of this subject knowledge, write a report on how you would apply your concepts in
	industry.
12.	Prepare a report on unit operations which are newly introduced in the current year.
13.	Write a report on your visit to research and development laboratory of national/international repute.
In a	ddition to these above stated assignments concern faculty member may design his/her won.
Tex	t Books/References:

1.	B. I. Bhatt and S. M. Vora	a, Stoichiometry (SI Units), 3 rd Ed., Tata McGraw Hill Publishers, New			
	Delhi.				
2.	D. M. Himmelblau, Basic	Principles and Calculations in Chemical Engineering, Prentice Hall			
	Publications.				
3.	O. A. Hougen, K. M Watso	on and R. A. Ragatz, Chemical Processes Principles, Part-I, Material and			
	Energy Balances, Asia Pub	lishing House, Bombay			
4.	R.M. Felder and R.W. Rousseau, Elementary Principles of Chemical Processes, 3rd edition, John				
	Wiley & Sons Publications.				
5.	D. F. Rudd, G. J. Powers an	d J. F. Sirola, Process Synthesis, Prentice Hall Publications.			
6.	S.D. Shukla and G. N. Pandey, Chemical Engineering Calculations, Lion Press, Kanpur.				
7.	W.E. Ranz, Describing Chemical Engineering Systems, McGraw Hill Publications.				
Sylla	Syllabus for Unit Test:				
Unit	it Test -I UNIT – I ,II,III				
Unit	t Test -II	UNIT – IV,V,VI			

UNIVERSAL HUMAN VALUES

Designation: Professional Core

Pre-requisite Courses: During the Induction Program, students would get an initial exposure to human values through Universal Human Values. This exposure is to be augmented by this compulsory full semester foundation course.

Teaching Scheme		Examination Scheme		Credits Allotted	
Practical	: 02 Hours/Week	Term work	: 50 Marks	Practical : 01	
Total	: 02 Hours/Week	Total	: 50 Marks	Total : 01	

Course Outcomes

- 1 Create more awareness of themselves, and their surroundings (family, society, nature)
- 2 Understand the Human being is coexisting with self and body and able to recognize its different needs and fulfilment.
- 3 Develop more responsible life with human relationships, while keeping in mind the human nature.
- 4 Understand to imbibe sensitive approach towards society and understand the dimensions of harmony in the society.
- 5 Understand the recycle structure of the nature and able to recognize the participation

6 Apply what they have learnt to their own self in different day-to-day settings in real life, at least a beginning would be made in this direction.

	Topics Covered				
UNIT-I	Introductions, Aspirations and Concerns				
	Getting to know each other, Self-exploration, Individual academic, career				
	Expectations of family, peers, society, and nation fixing one's goals Basic				
	human aspirations Need for a holistic perspective, Role of UHV.				
UNIT-II	Self-Management, Health	(04 Hours)			
	Self-confidence, peer pressure, time management, anger, stress Personality				

	development, Self-improvement Harmony in the human being. Health issues,	
	healthy diet, healthy lifestyle Hostel life Harmony of the self and Body	
	Mental and physical health.	
UNIT-III	Relationships	(04 Hours
	Home sickness, gratitude towards parents, teachers and others Ragging and	
	interaction Competition and cooperation Peer pressure. Harmony in	
	relationship Feelings of trust, respect, gratitude, glory, love.	
UNIT-IV	Society	(04 Hours
	Participation in society. Harmony in the society Understanding the harmony	
	in the society (society being an extension of family): Resolution, Prosperity,	
	fearlessness (trust) and co-existence as comprehensive Human Goals	
	.Visualizing a universal harmonious order in society- Undivided Society,	
	Universal Order- from family to world family	
UNIT-V	Natural Environment	(04 Hours
	Participation in nature Harmony in nature/existence Understanding the	
	harmony in the Nature	
	Interconnectedness and mutual fulfilment among the four orders of nature-	
	recyclability and self regulation in nature	
UNIT-VI	Self-evaluation Strategy	(04 Hours
	Strategy for transition from the present state to Universal Human Order: a. At	
	the level of individual: as socially and ecologically responsible engineers,	
	technologists and managers. At the level of society: as mutually enriching	
	institutions and organizations review role of education Need for a holistic	
	perspective.	
Text Books	5	
1 Huma	n Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel	Books, Nev
Delhi	, 2010.	
References		

1	Jeevan Vidya: Ek Parichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
2	Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004. 3. The Story of Stuff
	(Book).
3	The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi 5. Small is Beautiful
	- E. F Schumacher.
4	Slow is Beautiful - Cecile Andrews
5	Economy of Permanence - J C Kumarappa 8. Bharat Mein Angreji Raj - PanditSunderlal 9.
	Rediscovering India - by Dharampal
6	Hind Swaraj or Indian Home Rule - by Mohandas K. Gandhi 11. India Wins Freedom - Maulana
	Abdul Kalam Azad.
7	Vivekananda - Romain Rolland (English).

COMPUTER PROGRAMMING II

Designation: Professional Core

Pre-requisite Courses: Basic knowledge of computer fundamentals, C/C++ programming.

Teaching Scheme		cheme	Examination Sc	heme	Credits All	otted	
Pra	ctical	: 04 Hours/Week	Term Work	: 25 Marks	Practical	: 02	
Total : 04 Hours/Week		: 04 Hours/Week	Oral	: 25 Marks	Total	: 02	
			Total	: 50 Marks			
C	0	4					
	urse Ou						
1		late basic OOPs concepts and requirement of Java					
2	Clarify	y class fundamentals					
3	Apply	OOPs concept using inheritance					
4	Elucid	late runtime exceptions					
5	Comp	orehend reading and writing files in java					
6	Clarify	fy collection of objects with searching and sorting.					
			Topics Covered	1			
UN	IT-I	Introduction to Java :					
		OOPs concepts; Need of Java; Java Virtual Machine (JVM); Java Development Kit (JDK);					
		byte code; variable; Data types, Handling strings, arrays, operators, and control flow					
		statements: command line arguments, Automatic type promotion.					
		1. Programs based on if-else, switch-case statements.					
		2. Programs based on loop statements.					
		3. Programs based on a	rrays.				
UN	IT-II	Class Fundamentals:					
		Java classes and objects	· Mathada and constru	atoma "this" transmo	nd. Mathadaa	a antina an	

	returning objects; Method overloading and constructor overloading; static and final			
	keywords; Nested classes.			
	4. Programs based on method accepting and returning objects.			
	5. Programs based on method overloading and constructor overloading.			
	6. Programs based on object arrays.			
UNIT-III	Inheritance:			
	Simple inheritance; Member access in inheritance; super class variable can refer subclass			
	object; super keyword; Multilevel hierarchy of inheritance; Method Overriding; Dynamic			
	method dispatch (Run time polymorphism); Abstract classes; Interfaces; DMD using			
	abstract classes and interfaces; Interfaces can be extended; final keyword to restrict			
	inheritance; Creating packages.			
	7. Programs based on multilevel hierarchy of inheritance.			
	8. Programs based on super keywords.			
	9. Programs based on dynamic method dispatch (DMD).			
UNIT-IV	Exception handling:			
	Exception introduction; Uncaught exception; try-catch blocks; Describing an exception;			
	'throw' keyword; 'throws' keyword; finally keyword; Manual exception.			
	10. Programs based on dynamic method dispatch using abstract classes and interfaces			
	11. Programs based on manual exception.			
	12. Programs based on Buffered Reader class.			
UNIT-V	IO Mechanism:			
	Byte stream; Character stream; Reading data from console: BufferedReader,			
	DataInputStream class; Reading and writing files: FileInputStream and FileOutputStream			
	class.			
	13. Programs based on DataInputStream class.			
	14. Programs based on FileInputStream class.			
	15. Programs based on File Output Stream class.			
UNIT-VI	Collection Framework:			
	Equals () and hashCode () methods, instanceof operator; Lists; Sets; Maps; Sorting and			
1	searching.			

	16. Programs based on Sorting.
	17. Programs based on searching.
In add	lition to these above stated programs / practicals concern faculty member may design his/her own
progra	ams / practicals.
Term	Work
Term	work will consist of the programs/practicals listed below, out of which any ten programs/practicals
are to	be performed in laboratory by the students.
Text 1	Books/References
1	H. Schildt, Java 2 Complete Reference, 5 th Edition, Tata Mc-Gra Hill.
2	SCJP 1.6 – Khalid Mughal.
3	SCJP 1.6 – Kathy Sierra.
4	JAVA 7 Programming, Black Book ,Kogent Learning Solutions Inc.
5	K. Arnold, J. Gosling, D. Holmes, The Java Programming Language, 3 rd Edition, Sun Microsystems.
6	A Primer, E. Balaguruswamy, Programming with Java, Tata Mc-Graw Hill Companies.
7	P. Naughton, H. Schildt, The complete reference Java 2 Third Edition, TMH publication.