Semester I					Total D Total M Total C	urati or arks: 5 redits:	n: 24 hrs 00 20	s/week	
Subjects	Teach Scheme Hrs./W	ing (Hrs) /eek		Examir	nation S (Marks)	cheme			Credits
	L	Р	Theory	Internal Assessment	TW	PR	Oral	Total	
Digital CMOS Design	04		50	50	-			100	04
IC Fabrication	04		50	50	-			100	04
Advanced Digital System Design	04		50	50				100	04
Open Elective - I	04		50	50				100	04
Lab Practice - I		04			25		25	50	02
Lab Practice - II		04			25		25	50	02
	16	8	200	200	50		50	500	20

Semester II Total Duration: 24hrs/week									
	Total Credits: 20								
Subjects	Teach Scheme Hrs./V	ning e (Hrs) Veek		Examir	nation S (Marks)	Scheme)	2		Credits
	L	Р	Theory	Internal Assessment	TW	PR	Oral	Total	
Analog CMOS Design	04		50	50				100	04
VLSI Test and Testability	04		50	50				100	04
Low Power IC Design	04		50	50				100	04
Open Elective - II	04		50	50				100	04
Lab Practice - I		04			25		25	50	02
Lab Practice - II		04			25		25	50	02
Total	16	8	200	200	50		50	500	20

Semester IIITotal Duration: 08 hrs/weekTotal Marks : 250Total Credits: 20									
Subjects	Teach Scheme Hrs./V	ing (Hrs) Veek	Examination Scheme (Marks)						Credits
	L	Р	Theory	Internal Assessment	TW	PR	Oral	Total	
Seminar		02			50		50	100	05
Dissertation Stage - I		06			100		50	150	15
Total		08			150		100	250	20

Semester IV Total Duration: 08 hrs/week Total Marks: 250 Total Credits: 20									
Subjects	Teach Scheme Hrs./V	ing (Hrs) Veek	Examination Scheme (Marks)						Credits
	L	Р	Theory	Internal Assessment	TW	PR	Oral	Total	
Dissertation Stage - II		08			150		100	250	20
Total		08			150		100	250	20

List of Open Electives

Open Elective - I	Open Elective - II
VLSI Signal Processing	Current Mode Circuit
System on Chip (SoC)	RF Circuit Design

	Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune						
	M. Tech. (Electronics-VLSI), Sem: I DIGITAL CMOS DESIGN						
Teaching	Scheme	Examination Scheme:	Credits Allotted:				
Theo	ory: 04	End Semester Examination (Theory): 50 Marks	Credits: 04				
	Internal Assessment (IA): 50 Marks						
		Total:100 Marks	Total Credits: 04				
Course Pr	re-requis	sites:					
The stu	udents sh	ould have knowledge of					
1	Basic E	Electronics					
2	Electro	nic Devices					
3	Switchi	ing Theory and Logic Design					
Course O	bjectives	3:					
1	Focus of	on systematic analysis and design of digital integrated circuits i	n CMOS				
	technology						
2	Enhance problem-solving and creative circuit design techniques.						
3	3 Emphasize the layout design of various digital integrated circuits.						
4	4 Focus on the methodologies and design techniques related to digital integrated circui						
0 0							
Course O	utcomes	: After learning this course students will be able to					
1	MOS	physics and emerging new CMOS technologies					
2	Mode	I the CMOS inverter with optimised power, area, and timing.					
3	Execu	ting layout for various digital integrated circuits					
4	Imple	menting CMOS combinational circuit					
5	Devise	e of CMOS sequential circuits and Depict CMOS memory arrays					
LINIT	T	MOS Structure and CMOS Flow	(00 H anna)				
UNIT	-1 .	MOS Structure and CMOS Flow	(09 Hours)				
	-	Review of basic MOS structure, v-1 Characteristics, MOS as to	ad,				
		Emerging CMOS technologies-FINFET's, Multi-gate transisto	ors,				
	1	use of Si in VLSI; Sheet resistance of layers, area capacitance	of				
		layers, CMOS process flow, latch-up in CMOS inverter, sh	ort				
		channel effects					
TINITT	TT	CMOS Inventor and Its Proposition	(10 II)				
UNII-	UN11-11 UNUS Inverter and its Properties						
Inve		inverter Properties: static niviOS, UNIOS and BIUMOS inverte	1				
desi		design aspect, switching threshold and noise margin concepts a	ind				
	1	their evaluation, dynamic behavior, power consumpti-	on;				
		MOSFET scaling: constant-voltage and constant-					
		field scaling.					

UNIT – III	CMOS Fabrication and Layout	(09 Hours)
	CMOS Process Technology, N-well, P-well process, Stick	
	diagram for Boolean functions, Optimization using Euler	
	Theorem, Layout Design Rules	
UNIT – IV	CMOS Combinational Logic	(10 Hours)
	CMOS Combinational Logic: static CMOS design, pass	
	transistor logic, dynamic logic, speed, power, and noise in	
	dynamic logic, cascading dynamic gates, domino logic, driving	
	large capacitive loads, propagation delay models, wiring	
	capacitances	
UNIT – V	CMOS Sequential Logic and Clocking of Circuits	(10 Hours)
	CMOS Sequential Logic: static latches and registers, MUX based	
	latches, S-R FF, dynamic latches and registers, Clocking of	
	Circuits: Classification of clocking schemes, clock	
	distribution techniques	
	Semiconductor Memories: static RAM; dynamic RAM; ROM,	
	flash memory	

- Kang, Sung Mo, Yusuf Leblebici, Kim C. CMOS digital integrated circuits. 4th Edition, MacGraw-Hill, 2019.
- 2. Neil.H, E.Weste, David Harris and Ayan Banerjee, CMOS VLSI Design: A Circuit and Systems Perspective, Pearson Education, 2011.
- 3. Jan M. Rabaey, Anantha P. Chandrakasan, and Borivoje Nikolić. Digital integrated circuits: a design perspective. Pearson Education, Incorporated., 2016.
- 4. Hodges, David, Horace Jackson, and Resve Saleh. Analysis and design of digital integrated circuits. McGraw-Hill, Inc., 2003.
- 5. Lin, Ming-Bo. Introduction to VLSI systems: a logic, circuit, and system perspective. CRC press, 2011.
- 6. Sorab K Gandhi, VLSI Fabrication Principles: Si and GaAs, John Wiley and Sons, 2010.

	Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune						
M. Tech. (Electronics-VLSI), Sem: I IC FABRICATION							
Teaching	Scheme:	Examination Scheme:	Credi	its Allotted:			
Theo	ory: 04	End Semester Examination (Theory): 50 Marks	Cr	edits: 04			
	-	Internal Assessment (IA): 50 Marks					
		Total:100 Marks	Total	Credits: 04			
Course Pr	re-requisi	ites:					
The stu	udents sho	build have knowledge of					
1	Basic El	ectronics					
2	Electron	ic Devices					
3	Enginee	ring Chemistry					
Course O	bjectives:						
1	Processe	es involved in semiconductor manufacturing, lithograph	y, and fabr	ication			
2	Model th	he oxidation growth rate and understand the oxidation p	rocess, the	process of			
2	diffusion	h, and the ion implantation process.					
3	Assemb	ry techniques and packaging of devices					
Course O	utcomes:	After learning this course students will be able to					
1	Acquire	knowledge about the various fabrication techniques and	lunderstan	d oxidation			
-	growth i	n the field of VLSI					
2	Interpret	t the various lithography techniques.					
3	Assay th	e concepts of diffusion and ion implantation.					
4	Acquire	knowledge of different types of deposition.					
5	Employ	the concept of etching and pattern transfer techniques in	n fabricatio	on.			
	1 7						
UNIT-	-I (CMOS IC Technology and Oxidation		(10Hours)			
	I	ntroduction to VLSI technology: Moore's law, CM	MOS IC				
	te	echnology, Clean Room types and Standards, Basic	c device				
	f	abrication steps. Physics of Crystal growth, wafer fabric	ation and				
	h	asic properties of silicon wafers	ation and				
		videtion: Surface presidention using ovidetion De	al Grove				
		Little Contract passivation using oxidation. De	al-Olove				
	n	nodel, types of oxidations and their killenatics					
UNIT	т т	ithography		(00H ours)			
	-ш Ц т	hanography The Dhotolithographic Drocoss Dhoto mark Est	rightion	(07110015)			
		omparison between positive and negative photoresists	Exposure				
COII Svet		Systems Characteristics of Exposure Systems E been					
		ithography. X-ray lithography Optical Lithography	hy. Ion				
		ithography.	,, 1011				
UNIT-	- III D	Diffusion and Ion-Implantation		(10Hours)			

	Doping Process, Diffusion: Impurity diffusion; solution of diffusion equation, modeling of diffusion phenomena, Technological processes for diffusion, diffusion systems, Ion Implantation: Implantation system, Principles, techniques	
	and applications, removal of implant damage.	
UNIT– IV	Etching:	(09Hours)
	Etching: Wet etching techniques, selectivity, isotropy and etch bias, common wet etchants, orientation dependent etching effects; Introduction to plasma technology, plasma etch mechanisms, selectivity and profile control plasma etch chemistries for various films, plasma etch system	
LINIT_ V	Denosition and Assembly techniques	(10Hours)
	Epitaxy and thin film deposition: Thermodynamics of vapor phase growth, Chemical Vapor Deposition (CVD), Metal organic CVD (MOCVD), Molecular beam epitaxy (MBE), reaction rate and mass transport limited depositions, atmospheric-pressure CVD (APCVD), Low pressure CVD (LPCVD), equipment's and applications of CVD. Assembly techniques and Packaging of VLSI Devices	

Text Book/ Reference Books:
1. Sze, S.M., VLSI Technology, Tata McGraw-Hill, 2017.
2. R.C. Jaeger, Introduction to Microelectronic Fabrication, Prentice Hall, 2013.
3. Chen, Wai-Kai. VLSI technology. CRC Press, 2003.
4. Ghandhi, Sorab K. VLSI fabrication principles: silicon and gallium arsenide. John Wiley &
Sons, 2008.
5. Plummer, James D. Silicon VLSI technology: fundamentals, practice, and modeling. Pearson
Education India, 2009.
6. Shacham-Diamand, Yosi, Tetsuya Osaka, Madhav Datta, and Takayuki Ohba, Advanced
nanoscale ULSI interconnects: fundamentals and applications. Springer Science & Business
Media, 2009.

Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune

M. Tech. (Electronics-VLSI), Sem: I ADVANCED DIGITAL SYSTEM DESIGN

		ADVANCED DIGITAL SISTEM DESIGN	
Teaching	Schem	e: Examination Scheme: Cree	lits Allotted:
Theo	ory: 04	End Semester Examination (Theory): 50 MarksC	Credits: 04
		Internal Assessment (IA): 50 Marks	
		Total:100 Marks Tota	al Credits: 04
Course Pr	re-requ	isites:	
The st	udents s	should have knowledge of	
1	Electr	onic Devices	
2	Switch	hing Theory and Logic Design	
Course O	bjectiv	es:	
1	CMO	S technology's focus on the systematic analysis and design of digita	l system
2	Focus	on the methodologies and design techniques related to advanced digita	l system
~ ~ ~			
Course O	utcome	s: After learning this course students will be able to	
1	Devis	e the synchronous sequential circuits	
2	Expre	ssing advanced design of asynchronous sequential circuit	
3	Integr	ating FSM design using HDL	
4	Corre	lating Synchronous Design using Programmable Devices	
5	Integr	ating to logic and system design using HDL	
	т		(00 11
UNII	-1	Sequential Circuit Design	(09 Hours)
		Analysis of clocked synchronous sequential circuits and	
		modeling, State diagram, state table, state table assignment and	
		reduction, Design of synchronous sequential circuits design of	
		iterative circuits, ASM chart and realization using	
		ASM	
UNIT-	- II	Asynchronous Sequential Circuit Design	(10 Hours)
		Analysis of asynchronous sequential circuit, flow table	
		reduction, races-state assignment, transition table and	
		problems in transition table, Design of asynchronous sequential	
		circuit, Static, dynamic, and essential hazards, data	
		synchronizers, mixed operating mode asynchronous circuits.	
		designing vending machine controller	
UNIT	– III	FSM Design using HDL	(09 Hours)
		Mealy and Moore designs, Implementation, Moore architecture	
		and HDL templates, Mealy architecture, and HDL templates	
			1

UNIT – IV	Synchronous Design using Programmable Devices	(10 Hours)
	Programming logic device families, designing a synchronous sequential circuit using PLA/PAL, Realization of finite state machine using PLD, FPGA, Xilinx FPGA, coding for FPGAs. Designing with FPGAs: Design flow for FPGAs, prototyping with FPGAs and debugging.	
$\mathbf{UNIT} - \mathbf{V}$	Logic and System Design using HDL	(10 Hours)
	Logic design with HDL, logic design with behavioural models of combinational and sequential logic, synthesis of combinational and sequential logic HDL operators, Arrays, concurrent and sequential statements, packages, different modeling, compilation, and simulation of HDL code, Test bench, realization of combinational and sequential circuits using HDL, Registers, counters, sequential machine, serial adder, Multiplier	

1. Roth Jr, Charles H., Larry L. Kinney, and Eugene B. John. Fundamentals of logic design.

Cengage Learning, 2020.

- 2. Ciletti, Michael D. Advanced digital design with the Verilog HDL. Vol. 1. Upper SaddleRiver: Prentice Hall, 2003.
- 3. Astola, Jaakko, and Radomir S. Stankovic. Fundamentals of switching theory and logic design.

Heidelberg: Springer, 2006.

4. Brown, Stephen D., and Zvonko G. Vranesic. Fundamentals of digital logic with Verilog

design. Vol. 1. New York: McGraw-Hill, 2003.

- 5. Ramachandran, Seetharaman. Digital VLSI systems design: a design manual for implementation of projects on FPGAs and ASICs using Verilog. Springer Science & Business Media, 2007.
- 6. Hassoun, Soha, and Tsutomu Sasao, eds. Logic synthesis and verification. Vol. 654. SpringerScience & Business Media, 2001.
- 7. Grout, Ian. Digital systems design with FPGAs and CPLDs. Elsevier, 2011.

			Bharati Vidyapeeth					
	College of Engineering, Pune							
			M. Tech. (Electronics-VLSI), Sem: I VLSI Signal Processing					
Teaching	Scheme	e:	Examination Scheme:	Cred	its Allotted:			
Theo	ory: 04		End Semester Examination (Theory): 50 Marks	С	redits: 04			
			Internal Assessment (IA): 50 Marks					
			Total:100 Marks	Tota	l Credits: 04			
Course P	ro_roau	isitas:	· · · · · · · · · · · · · · · · · · ·					
The st	udents s	hould	have knowledge of					
1	Basic	Flectr	conics					
2	Floot	onia F	Devices					
2	Digito	$\frac{1}{1}$	perfect services					
3	Digita	i Sign						
Course O	utcome	s: Aft	ter learning this course students will be able to					
1	Use It	eratio	n Bound for VLSI Signal Processing.					
2	Apply	Pipel	ining and Parallel processing for VLSI Signal Processi	ing				
3	Use R	etimir	ng for Signal Processing applications.					
4	Apply	Unfo	lding in VLSI Signal Processing.					
5	Use Fo	olding	g for Signal Processing					
LINIT	т	Téana	then Down d		(00 H orma)			
UNII	-1	Itera	ation Bound duction Data Flow Crank Bannacentations, Loon Bou	ndand	(09 Hours)			
		Inuro	tion Bound Algorithms for Computing Iteration E	and and				
		Long	pest Path Matrix and Minimum Cycle Mean algorit	thms -				
		Iterat	tion Bound of Multi-rate Data Flow Graphs.					
UNIT-	- II	Pipe	lining and Parallel processing		(10 Hours)			
		Intro	duction, Pipelining for FIR Digital Filters: Cutset,	Feed-				
		forw	ard Cutset, Data-Broadcast Structures, Fine-Grain Pipe	lining,				
		Paral	llel Processing: Designing a Parallel FIR System, Pipe	elining				
		for L	low Power, Parallel Processing for Low Power					
LINIT	TTT	Doti	ming		(10 Hours)			
UNII	- 111	Intro	duction Quantitative Description of Patiming Proper	tion of	(IV HOUIS)			
		Retir	ning Solving systems of Inequalities Cutset Retining	ng and				
		Pinel	lining Retiming for Clock Period Minimization Retim	ing and				
Re			ster Minimization	ing ioi				
		01	···· •					
UNIT	– IV	Unfo	olding		(09 Hours)			
		Intro	duction, An Algorithm for Unfolding, Properties of					
		Unfo	olding, CriticalPath, Unfolding, and Retiming,					
		Appl	lications of Unfolding: Sample Period Reduction and					
		Paral	Ilel Processing					
TINIT	X 7	E-L1			(10 Патего)			
UNIT	- v	r old	ing		(IV HOURS)			

Introduction, Folding Transformation, Register Minimization	
techniques: Lifetime Analysis, Data Allocation using Forward-	
Backward Register Allocation, Register Minimization in Folded	
Architectures: Biquad Filter and IIR Filter examples, Folding of	
Multi rate Systems	

1.	Parhi, Keshab	K. VLSI	digital	signal 1	processing	systems:	design	and	implementa	tion.
	John Wiley &	x Sons, 200)7.							
2	Proakis John	G Digital	signal	processi	ng princir	les algor	ithme	and a	nnlications	A/E

- 2. Proakis, John G. Digital signal processing: principles, algorithms, and applications, 4/E. Pearson Education India, 2007.
- Kalya, Shubhakar, Muralidhar Kulkarni, and K. S. Shivaprakasha, eds. Advances in Communication, Signal Processing, VLSI, and Embedded Systems: Select Proceedings of VSPICE 2019. Springer, 2020.

4. Mitra, Sanjit Kumar. Digital signal processing: a computer-based approach. Vol. 1221. New York, NY, USA:: McGraw-Hill, 2011.

	Bharati Vidyapeeth (Deemed to be University)							
	College of Engineering, Pune							
	M. Tech. (Electronics-VLSI), Sem: I							
	SYSTEM ON CHIP							
Teaching	Scheme	e: Examination Scheme:	Cred	its Allotted:				
Theo	ory: 04	End Semester Examination (Theory): 50 Marks	Cı	redits: 04				
		Internal Assessment (IA): 50 Marks		~				
		Total:100 Marks	Total	Credits: 04				
Course P	re-reau	isites.						
The st	udents s	hould have knowledge of						
1	Electro	onic Devices						
2	Micro	processor and Microcontroller						
3	Switch	ning Theory and Logic Design						
5	Switch	ing theory and Logic Design						
Course O	bjective	25:						
1	Design	, optimization, and programming a modern system-on-chip						
2	SoC de	esign with on-chip memories and communication networks, I/O in	nterfacing	.				
3 Signal integrity aware SoC design and scheduling algorithms.								
Course O	utcome	s: After learning this course students will be able to						
1	Exami	ne the performance of SOC-based design using advanced te	chnique	s.				
2	Apply	timing analysis for a SoC-based design						
3	Create	interconnection structures in a SoC-based system design.						
4	Analys	as of IP-based System Design						
	50C 0	esign, implementation, and testing						
LINIT	_ T	Introduction to SoC		(09 Hours)				
	- 1	Introduction Driving Forces for SoC Components of	f SoC	(0) 110013)				
		Design flow of SoC. Herdware/Software nature of SoC.	Docian					
		Trade offer SoC Applications	Design					
		Trade-ons, Soc Applications						
UNIT-	- II	System-level Design		(10 Hours)				
		Processor selection, Concepts in Processor Archit	tecture:					
		Instruction set architecture (ISA), elements in Instruction	ruction					
		Handing-Robust processors: Vector processor,	VLIW.					
		Superscalar, CISC, RISC, Processor evolution: Soft and	d Firm					
		processors, Custom-Designed processors. On-chip memory	v					
			r					
UNIT	– III	SoC Interconnection		(10 Hours)				
		SoC Interconnection Structures. Bus-based Structures. A	AMBA	. /				
		Bus. Network on Chip (NoC) Interconnection Strue	ctures,					
		topologies, switching strategies, routing algorithms, flow co	ontrol,					
		Ouality of Service. Reconfigurability in communication						

	architectures.	
UNIT – IV	IP based system design	(09 Hours)
	Introduction to IP Based design, Types of IP, IP across design	
	hierarchy, IP life cycle, Creating and using IP, Technical concerns	
	on IP reuse, IP integration, IP evaluation on FPGA prototypes.	
$\mathbf{UNIT} - \mathbf{V}$	SOC implementation and SOC Testing	(10 Hours)
	Study of processor IP, Memory IP, wrapper Design, Real-time operating system (RTOS). Peripheral interface and components.	
	High-density FPGAs EDA tools used for SOC design	
	Manufacturing test of SoC: Core layer, system layer, application	
	layer,	
		L

Text Book/ Reference Books:
1. Flynn, Michael J., and Wayne Luk. Computer system design: system-on-chip. John
Wiley & Sons, 2011.
2. Al-Hashimi, Bashir M., ed. System-on-chip: next generation electronics, IET, 2006.
3. Ahmed Jerraya and Wayne Wolf, Multiprocessor Systems-on-Chips (Systems on Silicon
Series), First Edition, Morgan Kaufmann, 2010.
4. Pasricha, Sudeep, and Nikil Dutt. On-chip communication architectures: system on chip
interconnect. Morgan Kaufmann, 2010.
5. Flynn, D., Aitken, R., Gibbons, A., & Shi, K. Low power methodology manual: for
system-on-chip design. Springer Science & Business Media, 2007.
6 Wang Lowng Torma Charles E. Stroud and Nur A. Touba System on abin test
6. wang, Laung-Terng, Charles E. Stroud, and Nur A. Touda. System-on-chip test
architectures: nanometer design for testability. Morgan Kaufmann, 2010.
7. Wayne Wolf, "Modern VLSI Design: IP Based Design", Prentice-Hall India, 2009.

Lab Practice – I

List of experiments:

- 1. Introduction to HDL and different types of modelling.
- 2. To model HDL code to describe the functionality of all the basic logic gate. Compile and simulate the code to obtain the timing waveform. Draw the RTL design using data flow of architectural modelling.
- To model HDL code to describe the functionality of half adder, full adder, half subtractor, full subtractor. Compile and simulate the code to obtain the timing waveform. Draw the RTL design using data flow and structural modelling (as "Component Instantiation").
- To model HDL code to describe the functionality of MUX, DEMUX, Encoder and Decoder. Compile and simulate the code to obtain the timing waveform. Draw the RTL design using data flow and structural modelling.
- 5. To model HDL code to describe the functionality of D-FF and D-Latch. Compile and simulate the code to obtain the timing waveform. Draw the RTL design using data flow and structural modelling.
- 6. Implement and verify all logic gates, Half adder, Full adder, Half subtractor and Full subtractor in FPGA Kit.
- To model HDL code to describe the functionality of 4-bit parallel Adder using two full adders as "Component Instantiation". Compile and simulate the code to obtain the timing waveform and draw the RTL design.
- 8. To model Universal Shift register using HDL and Implement in FPFA Kit.
- 9. Project 1: Application based Hardware implementation.
- 10. Project 2: Application based Hardware implementation.

Software: VIVADO (Xilinx) tool

Hardware: FPGA Boards (NEXYS A7, GENESYS 2)

Lab Practice – II

List of experiments:

- 1. To model HDL code for up counter, down counter and up-down counter. Compile and simulate the code to obtain the timing waveform. Draw the RTL design.
- 2. To model HDL code for sequence detector. Compile and simulate the code to obtain the timing waveform. Draw the RTL design.
- 3. To interface PMOD BT module with using FPGA kit
- 4. To interface PMOD GPS module with FPGA kit
- 5. To interface PMOD WIFI module with FPGA kit
- 6. To model HDL code for speed control of stepper motor and interface stepper motor with FPGA kit
- 7. To interface camera module with FPGA kit
- 8. To interface PMOD TEMP module with using FPGA kit
- 9. Project 1: Application based Hardware implementation.
- 10. Project 2: Application based Hardware implementation.

Software: VIVADO (Xilinx) tool

Hardware: FPGA Boards (NEXYS A7, GENESYS 2, KINTEX-7, PMOD BT, PMOD GPS, PMOD WIFI, Stepper motor, Camera module, PMOD TEMP)

Semester II	Total Duration: 24hrs/week Total Marks : 500 Total Credits: 20								
Subjects	Teach Scheme Hrs./V	iing (Hrs) Veek		Examir	nation S (Marks	Scheme)	2		Credits
	L	Р	Theory	Internal Assessment	TW	PR	Oral	Total	
Analog CMOS Design	04		50	50				100	04
VLSI Test and Testability	04		50	50				100	04
Low Power IC Design	04		50	50				100	04
Open Elective - II	04		50	50				100	04
Lab Practice - I		04			25		25	50	02
Lab Practice - II		04			25		25	50	02
Total	16	8	200	200	50		50	500	20

List of Open Electives

Open Elective - I	Open Elective - II
VLSI Signal Processing	Current Mode Circuit
System on Chip (SoC)	RF Circuit Design

			Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune		
			M. Tech. (Electronics-VLSI), Sem: II Analog CMOS Design		
Teaching	Schen	ne:	Examination Scheme: Cre	dits Allotted:	
Theo	ory: 04		End Semester Examination (Theory): 50 Marks	Credits: 04	
			Internal Assessment (IA): 50 Marks		
			Total:100 Marks Tot	al Credits: 04	
Course P	re-req	uisites:			
The st	udents	should	have knowledge of		
1	Basi	c Electr	ronics		
2	Elect	tronic I	Devices		
3	VLS	I Desig	n		
	120				
Course O	utcom	es: Aft	ter learning this course students will be able to		
1	Appl	y model	ling for MOS circuits.		
2	Desig	zn Analo	og CMOS sub-circuits.		
3	Conc	eptualiz	e CMOS amplifiers.		
4	Char	acterize	CMOS OP AMPs		
5 Concepts of High-Performance CMOS OP AMPs					
		-P			
UNIT	– I	MOS	Devices and Modeling	(09 Hours)	
		Introdu	uction to Analog Design and its Tradeoffs, The MOS Transistor		
		Conce	pt of Threshold Voltage, Derivation of I_D , Operation of MOSFE	Г	
		under	various regions, Concept of g_m , MOS Capacitance, MOS Modelin	g	
		: Simpl	Model for the MOS Transistor, Sub-threshold MOS Model	-	
		Signai	model for the mos Transistor, Sub-uneshold mos model.		
UNIT-	- II	Analo	g CMOS Sub-Circuits	(10 Hours)	
		Introd	uction to CMOS Sub-circuits, MOS Switch, MOS Diode, MOS		
		Active	e Resistor, Current Sinks and Sources, Current Mirrors, Current and	1	
		Voltag	ge References, Band gap Reference.		
LINUT	TTT		CC A 1969	(10 II	
UNIT	- 111		S Amplifiers	(10 Hours)	
		Introd	luction to CMOS Basic Amplifiers, Active pMOS load		
		Invert	ers, Current Source Inverters, Push pull Inverters,		
		Differ	rential Amplifiers: Introduction, Design Process and Design		
		Desig	n example		
		Desig	n example		
UNIT	– IV	СМО	S Operational Amplifiers	(10 Hours)	
		Revi	ew of Operational Amplifier concepts, Introduction to two		
		stage	e OP AMP, OP AMP Design Process, Design of CMOS OP		
		AMI	Ps, Compensation of OP AMPs, Design of Two-Stage OP		
		AMF	Ps, Power-Supply Rejection Ratio of Two -Stage OP AMPs,		

Cascode OP AMPs, Measurement Techniques of OP AMP	
UNIT – V Introduction to High Performance CMOS OP AMP (09 H	Hours)
Introduction to High Performance CMOS OP AMP such as	
Buffered OP AMP, High Speed/Frequency OP AMP: Introduction	
Switched OP AMP, Current Feedback OP AMP, Parallel path OP AMP,	
Micro Power OP AMP: Introduction and Design Example, Low Noise	
OP AMP, Low Voltage OP AMP	

1. Philip E. Allen and Douglas R. Holberg, CMOS Analog Circuit Design, Oxford University Press, International Second Edition/Indian Edition, 2010.

2. Paul R. Gray, Paul J. Hurst, S. Lewis and R. G. Meyer, Analysis and Design of Analog Integrated Circuits -Wiley India, Fifth Edition, 2010.

3. David A. Johns, Ken Martin, Analog Integrated Circuit Design, Wiley Student Edn, 2013.

4. Behzad Razavi, Design of Analog CMOS Integrated Circuits, TMH Edition, 2002.

5. Baker, Li and Boyce, CMOS: Circuit Design, Layout and Simulation, PHI, 2010.

Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune

M. Tech. (Electronics-VLSI), Sem: II VLSI Test and Testability

		+ <u>_</u> ~_ _				
Teaching	Scheme:	Examination Scheme: Cree	lits Allotted:			
The	ory:04	End Semester Examination (Theory):50Marks	redits:04			
		Internal Assessment (IA): 50Marks				
		Total:100Marks Tota	lCredits:04			
Course P	re-requisit	28:				
The st	udents shou	ld have knowledge of				
1	Basic Ele	ctronics				
2	Digital El	ectronics				
Course O	bjectives:					
1	Introducti	on of different types of faults in digital circuits.				
2	To introdu	ce logic and fault simulation.				
3	To introdu	ce testability measures.				
4	Study BIS	Γ techniques for improving testability				
5	To Study b	oundary scan based test architectures and study of fault diagnos	is.			
Course	utoomos. A	fter learning this course students will be able to				
	Course Outcomes: After learning this course students will be able to					
1	I Recognize different fault models.					
2	Idontify dit	formation for a methods				
3	Decomize t	he DIST techniques for improving testshility				
4	Recognize t	he BIST techniques for improving testability				
5	Understand	the boundary scan based test architectures and system fault diagnost	lS.			
TINIT	T T					
UNIT	<u>-1 1e</u>	sting and Fault Modeling	(10Hours)			
	Rol	e of Testing, Digital and Analog VLSI Testing, , Types of				
	les	ting, Modeling Digital Circuits at Logic Level, Register Level				
	and	Structural Models. Levels of Modeling. Fault models - Stuck-at	Į.			
	Taul	is, Bridging faults, intermittent faults	-			
UNIT-	-II Loc	ric and Fault Simulation	(09Hours)			
	Sim	ulation for Design Verification and Test Evaluation Modeling	(0)110415)			
	Circ	ulture for Simulation Algorithms for True-value Simulation				
	Alo	orithms for Fault Simulation ATPG				
UNIT	– III – Te	stability Measures	(10Hours)			
		AP Controllability and Observability High Level Testability				
	Me	asures Digital DFT and Scan Design: Ad-Hoc DFT Methods				
	Sca	n Design, Partial-Scan Design, Variations of Scan				
	Sea					

UNIT– IV	Built-In Self-Test	(09Hours)
	BIST Process, Pattern Generation, LFSR for pattern generation,	
	Response Compaction, Built-In Logic Block Observers, Test-Per-	
	Clock, Test-PerScan BIST Systems, Circular Self Test Path	
	System, Memory BIST, Delay Fault BIST.	
UNIT– V	Boundary Scan and system level Diagnosis	(10Hours)
	TAP Controller and Port, Boundary Scan Test Instructions, Pin	
	Constraints of the Standard, Boundary Scan Description Language:	
	BDSL Description Components, Pin Descriptions.	
	Concept of Redundancy, Spatial Redundancy, Time Redundancy,	
	Error Correction Codes. Reconfiguration Techniques; Yield	
	Modeling, Reliability and effective area utilization	

Text Books/Reference Books:	
 M. Bushnell, V. Agrawal, Essentials of Electronic Testing for Digital, Memory and M Signal VLSI Circuits, Kluwer Academic Publishers, 2004. 	Mixed
2. Z. Navabi, Digital System Test and Testable Design, Springer, 2011.	
3. Miron Abramovici, Melvin A. Breur, Arthur D. Friedman, Digital Systems Testing ar Testable Design, Jaico Publishing House, 2001.	nd
 M. Abramovici, M. A. Breuer and A.D Friedman, Digital Systems and Testable Desig Jaico Publishing House, 1990. 	gn,
5. P.K. Lala, Digital Circuits Testing and Testability, Academic Press, 1997.	
 L. T. Wang, C. W. Wu, and X. Wen, VLSI Test Principles and Architectures, Morgan Kaufmann, 2006. 	1
 Robert J. Feugate, Jr., Steven M. Mentyn, Introduction to VLSI Testing, Prentice Hall Englehood Cliffs, 1998. 	l,
8. Alfred Crouch, Design for Test for Digital ICs and Embedded core systems, Prentice 1999.	Hall,

Bharati Vidyapeeth (Deemed to be University)									
College of Engineering, Pune									
M. Tech. (Electronics-VLSI), Sem: II									
Low Power IC Design									
Teaching Scheme:Examination Scheme:Credit									
Theo	ory: 04	End Semester Examination (Theory): 50 Marks C	Credits: 04						
		Internal Assessment (IA): 50 Marks							
		Total:100 Marks Tota	al Credits: 04						
Course Pr	re-requi	sites.							
The stu	udents sł	hould have knowledge of							
1	Basic H	Electronics							
2	VLSU	Design							
3	Digital	circuits							
	8								
Course O	utcomes	After learning this course students will be able to							
1	To carr	ry out research and development in the area of Low Power VLSI c	rcuits.						
2	Apply	techniques to improve power consumption of VLSI circuits							
3	Utilize	logic simulation methods to design Low Power VLSI circuits.							
4	Apply	logic-level, architecture-level and system-level techniques in vario	us designs to						
optimize power consumption of the VLSI circuits.									
5 Implement practical and state of the art Low Power VLSI design, suitable									
	Industr	y applications.							
		· · · ·							
UNIT	-1 In	ntroduction to Low Power VLSI design	(09 Hours)						
	In	troduction to Low Power VLSI design, Importance of low power							
	de	esign, Challenges in low power VLSI design, Application of Low	7						
	Po	ower VLSI circuits, Power analysis of CMOS circuits, Themes of							
	L	ow Power VLSI design, Supply voltage scaling, Reduction of load							
	ca	apacitances. Emerging Low power approaches.							
UNIT-	-II D	evice and Technology	(10 Hours)						
	D	evice and Technology impact on Low Power: Dynamic Dissipation	1						
	in	CMOS, Transistor Sizing and Gate Oxide Thickness, Impact of	Ē						
	Т	echnology Scaling, and Technology and Device Innovation	1						
	Si	imulation Power analysis: SPICE circuit simulators, gate-level logic							
	si	mulation, capacitive power estimation, static state power, gate-leve							
	ca	pacitance estimation, architecture-level analysis, data correlation	l						
	ar	nalysis in DSP systems, Monte Carlo simulation							
UNIT	– III P	robabilistic power analysis	(10 Hours)						
	Pı	robabilistic power analysis: random logic signals, probability and							
	fr	equency, probabilistic power analysis techniques, signal entropy	7						
	L	ow Power Circuits: Transistor and Gate Sizing, Network							

	Restructuring, and Reorganization Special Flip Flops & Latches						
	design, high capacitance nodes, low-power digital cell library Logic						
	level: gate reorganization, signal gating, logic encoding, state						
	machine encoding, pre-computation logic.						
UNIT – IV	Low-power architecture and systems	(10 Hours)					
	Low-power architecture and systems: power and performance						
	management, switching activity reduction, parallel architecture						
	with voltage reduction, flow graph transformation, low-power						
	arithmetic components Low-power clock distribution: power						
	dissipation in clock distribution, single driver vs. distributed						
	buffers, zero skew vs. tolerable skew, chip and package co-design						
	of clock network, Leakage currents in DSM technology Leakage						
techniques							
UNIT – V	Techniques for Power Reduction	(09 Hours)					
	Special Techniques: Power Reduction in Clock Networks, CMOS						
	Floating Node, Low Power Bus Delay Balancing, and Low Power						
	Techniques for SRAM, Variation-tolerant design Adiabetic logic						
	circuits, battery-driven system design CAD tools for low power						
	(software design for low power), case studies (low power static						
	RAM architecture)						

- Gary K. Yeap, Practical low power digital VLSI design. Springer Science & Business Media, 2012.
- Jan M. Rabaey and Pedram Massoud, eds. Low power design methodologies, Springer Science & Business Media, 2012.
- 3. Kaushik Roy and Sharat C. Prasad. Low-power CMOS VLSI circuit design. John Wiley & Sons, 2009.
- 4. Behzad Razavi, Design of Analog CMOS Integrated Circuits, TMH Edition, 2002.
- 5. Kiat-Seng Yeo, Samir S. Rofail, and Wang Ling Goh. CMOS/BiCMOS ULSI: low voltage, low power, (2002).
- 6. Wolfgang Nebel and Mermet eds. Low power design in deep submicron electronics, Springer Science & Business Media, 2013.

		Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune						
M. Tech. (Electronics-VLSI), Sem: II								
		Open Elective-II: Current Mode Circuit						
Teaching	g Scheme:	Examination Scheme:	Credits A	llotted:				
The	ory: 04	End Semester Examination (Theory): 50 Marks	Credits	3: 04				
		Internal Assessment (IA): 50 Marks	T (1 C	1:4 0.4				
		I otal:100 Marks	Total Cree	dits: 04				
Course P	re-reauis	ites:						
The st	tudents sho	ould have knowledge of						
1	Switchi	ng Theory and Logic Design						
2	Basic E	lectronic						
3	CMOS	Design						
		6						
Course C	outcomes:	After learning this course students will be able to						
1	Current r	node circuits over voltage mode counterparts.						
2	Understa and Nora	nd Trans-linear principle for current mode circuits along with	concept of	f Nullator				
3	Understa	nd the properties of different current mode analog building bl	locks					
4	Apply cu	rrent mode approach in Non-Linear Circuits						
5	Apply cu	rrent mode Integrated circuits						
UNIT	– I In	ntroduction to Current Mode Circuits	(09	Hours)				
	In	troduction, comparison of current mode circuits with voltage r	node					
	ci	rcuits; advantages, some current mode circuits: vector differ	ence					
	ci	rcuit, TL one quadrant squaring circuit, absolute value circuit	t, TL					
	m	ultiplier and divider						
UNIT	-II C	urrent Mode Circuit Principle	(10	Hours)				
	\mathbf{C}	urrent mode circuits: Principle of operation, trans-linear princ	nple,					
	cc	oncept of Nullator and Norator,	~ ~ ~ ~					
	Sc	ome BJT and MOS based current mode blocks: CCI, C	JCII,					
	in	ternal structures, principle of operation; port relationship, and	lysis					
	ar	nd applications; multi-output current conveyors: Construc	tion,					
	advantages							
TINIT	UNIT III Cumment Mede Duilding Display							
		urrent mode Building blocks: CCCII(+) CCCII(-) OT A O	TRA	10015)				
	in	internal structures, principle of operation, port relationship, analysis						
	111 9 r	and applications: multi-output current conveyors: Construct	rtion					
		lyantages use of transconductance amplifier as variable resist	ance					
	in	ductance simulator oscillator and filter						
		ductance simulator, oscillator and inter.						
UNIT	-IV N	on-linear applications	(10]	Hours)				

Mirror Amplifier (OMA): principle of operation, applications as								
voltage controlled current source, current controlled current source,								
	voltage-controlled voltage source, current controlled voltage source,							
	high CMRR instrumentation amplifier							
UNIT – V	Current mode Integrated singuit and applications	(00 Hours)						
UIVII – V	Current mode integrated circuit and applications	(09 mours)						
	CFOA (Current feedback operational amplifier) AD844 IC, Port							
	CFOA (Current feedback operational amplifier) AD844 IC, Port relationship, circuit analysis and its applications, OTA (CA3080)	(09 Hours)						
	CFOA (Current feedback operational amplifier) AD844 IC, Port relationship, circuit analysis and its applications, OTA (CA3080) IC, Port relationship, circuit analysis and its applications, Current							
	CFOA (Current feedback operational amplifier) AD844 IC, Port relationship, circuit analysis and its applications, OTA (CA3080) IC, Port relationship, circuit analysis and its applications, Current feedback amplifier with DC gain (LT1228) IC, Port relationship,							

- 1. David Haigh, F. J. Lidgey, Chris Toumazou, eds. Analogue IC design: the current-mode approach. Institution of Engineering and Technology, 1998.
- 2. Raj Senani, D. R. Bhaskar, A. K. Singh. Current conveyors: variants, applications and hardware implementations. Vol. 560. Switzerland: Springer International Publishing, 2015.
- 3. Raj Senani, D. R. Bhaskar, A. K. Singh, and V. K. Singh. Current feedback operational amplifiers and their applications. Springer New York, 2013.
- 4. P V Ananda Mohan, Current-mode VLSI analog filters: design and applications. Springer Science & Business Media, 2003.
- 5. Mohammed Ismail, Mohamad Sawan, Analog Circuits and Signal Processing, 2013.
- 6. Fei Yuan, CMOS current-mode circuits for data communications, Springer Science & Business Media, 2007.
- 7. Sajal K. Paul, IC Analog Filter Design, lambert academic publishing, 2011.

Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune										
	M. Tech. (Electronics-VLSI), Sem: II Open Elective-II: RF Circuit Design									
Teaching	Schem	e:	Examination Scheme:	Cred	its Allotted:					
Theo	ory:04		End Semester Examination (Theory):50Marks	C 1	redits:04					
			Internal Assessment (IA): 50Marks							
			Total:100Marks	Tota	ICredits:04					
Course P	re-requ	isites								
The st	udents	should	have knowledge of							
1	Analo	og IC d	lesign							
2	Comr	nunica	ntion systems							
Course O	bjectiv	es:								
1	Introd	uction	to RF modulation.							
2	Introdu	ce the	working of RF components.							
3	To intr	oduce	mixers and oscillators.							
4	Study	of diff	erent RF amplifiers and synthesizer.							
5	To Stu	dy LN	A topologies.							
Course O	utcome	es: Aft	ter learning this course students will be able to							
1	Unders	stand th	he basic concepts of RF design and modulation							
2	Unders	tand th	e behavior of RF components							
3	Unders	tand th	e operation of mixers and oscillators.							
4	Identify	y differ	ent RF amplifiers and synthesizers.							
5	Compre	ehend t	he different LNA topologies & design techniques							
					(1077					
UNIT-	- I	Intro	oduction to RF design		(10Hours)					
		Basic	Concepts in RF Design, Analog and digital modulation	1 of RF						
		circui	ts, Comparison of various techniques for power efficient	ncy,						
		Coher	ent and non-coherent detection, Mobile RF communic	ation						
		and ba	asics of Multiple Access techniques, Receiver and							
		Trans	mitter architectures, Transmission media and Reflectio	ns,						
		Maxii	num power transfer, Scattering Parameters							
UNIT-	-11	RF C	omnonents		(09Hours)					
01112		RF Pa	assive Components: Characteristics of passive IC comp	onents	(0) 110 415)					
		at RF	frequencies – interconnects resistors capacitors indu	ctors						
and t			and transformers – Transmission lines.							
		RF active components: BJT and MOSFET behavior at RF								
		frequencies, modeling of the transistors, Noise performance and								
	limitations of devices, integrated parasitic elements at high									
		freque	encies and their monolithic implementation.							
		3.51			(1011)					
UNIT	– III	Mixe	ers and Oscillators		(10Hours)					

	power constrained noise optimization, linearity and large signal performance. Linearity consderations,1-dB compression, IIP, THD estimation	
	SNR, LNA topologies. MOS LNA, BJT LNA, noise cancelling LNA,	()
UNIT- V	Low Noise Amplifiers	(10Hours)
	Radio frequency Synthesizers- PLLS, Various RF synthesizer architectures and frequency dividers, Design issues in integrated RF filters.	
	RF power amplifiers – Class A, AB, B, C, D, E and F amplifiers, modulation of power 36 amplifiers, linearity considerations	
UNIT-IV	RF amplifiers and synthesizers	(09Hours)
	Oscillators: Basic Principles, Cross-Coupled VCO, Phase Noise, Noise power and trade off. Resonator VCO designs, Quadrature and single sideband generators.	
	Passive and Active Mixers: multiplier-based mixers, sub-sampling mixers, diode-ring mixers,	

Text Books/Reference Books:
1. T. H. Lee, Design of CMOS RF Integrated Circuits, Cambridge University Press, 2003.
2. B. Razavi, RF Microelectronics, Pearson, 2012.
3. R. Jacob Baker, H.W. Li, D.E. Boyce, CMOS Circuit Design, layout and Simulation, PHI, 2019.
4. Y. P. Tsividis, Mixed Analog and Digital Devices and Technology, TMH, 2002.
5. Bosco Leung, VLSI for Wireless Communication, Springer, 2011.

Lab Practice – I

List of experiments:

- 1. Design the second-generation current conveyor (CCII) block and verify the port relationship.
- 2. Design the third-generation current conveyor (CCIII) block and verify the port relationship.
- 3. Design the differential difference current conveyor transconductance amplifier (DDCCTA) block and differential voltage current conveyor transconductance amplifier (DVCCTA) and verify the port relationships.
- 4. Design and analyse a first-order universal filter based on CCII and verify the output response of the filter.
- 5. Design and analyse the oscillator based on CCII and verify the output response of the oscillator.
- Design and analyse a first-order universal filter and oscillator based on IC AD844 (monolithic IC) and verify the output response of the circuits. Implement the hardware circuit and verify the simulation results.
- 7. Design and analyse a second filter and oscillator based on IC CA3080 (monolithic IC) and verify the output response of the circuits. Implement the hardware circuit and verify the simulation results.
- Design and analyse the first and second universal filters and oscillators based on IC LT1228 (monolithic IC) and verify the output responses of the circuits. Implement the hardware circuit and verify the simulation results.
- 9. Project 1: Application-based Hardware Implementation
- 10. Project 2: Application-based Hardware Implementation

Software: Cadence OrCAD tool/cadence Virtuoso/ Synopsys/Mentor Graphics/ SPICE.

Hardware: IC AD844, IC CA3080, IC LT1228

Lab Practice – II

List of experiments:

- 1. Characteristics of MOS and MOS Modeling
- 2. Design of MOS diode.
- 3. Design of current mirrors.
- 4. Design of the basic current sink and sources
- 5. Design of pMOS load inverting amplifier and verify the output response of the amplifier.
- 6. Design push pull inverting amplifier and verify the output response of the amplifier.
- 7. Design differential amplifier and verify the output response of the amplifier.
- 8. Design a two-stage CMOS operational amplifier and analyze the different parameters.
- 9. Project 1: Application-based Circuit Implementation
- 10. Project 2: Application-based Circuit Implementation

Software: Cadence OrCAD tool/cadence Virtuoso/ Synopsys/Mentor Graphics/SPICE.

Semester IIITotal Duration: 08 hrs/weekTotal Marks : 250Total Credits: 20									
Subjects	TeachingExamination SchemeScheme (Hrs)(Marks)Hrs./Week(Marks)				Credits				
	L	Р	Theory	Internal Assessment	TW	PR	Oral	Total	
Seminar		02			50		50	100	05
Dissertation Stage - I		06			100		50	150	15
Total		08			150		100	250	20

Semester IV Total Duration: 08 hrs/week Total Marks: 250 Total Credits: 20									
Subjects Teaching Scheme (Hrs) Hrs./Week			Examination Scheme (Marks)					Credits	
	L	Р	Theory	Internal Assessment	TW	PR	Oral	Total	
Dissertation Stage - II		08			150		100	250	20
Total		08			150		100	250	20