Proposed Structure of M. Tech Electrical Engineering (Power Systems) (2023-24)

Semester I	Total Duration: 24 hrs/week Total Marks:500 Total Credits: 20								
Subjects	Teach Scheme Hrs./V	(Hrs)		Examination Scheme (Marks)					
	L	Р	Theory	Internal Assessment	TW	PR	Oral	Total	
Power System Modeling	04		50	50	-			100	04
Energy Audit &Power Quality Issues	04		50	50	-			100	04
Power system planning & reliability	04		50	50				100	04
Open Elective - I	04		50	50				100	04
Lab Practice - I		04			25		25	50	02
Lab Practice - II		04			25		25	50	02
	16	8	200	200	50		50	500	20

Semester II			Total Duration: 24hrs/week Total Marks :500 Total Credits: 20						
Subjects	Subjects Teaching Scheme (Hrs) Hrs./Week			Examination Scheme (Marks)					
	L	Р	Theory	Internal Assessment	TW	PR	Oral	Total	
Power System Dynamics & Stability	04		50	50				100	04
Advanced Power Electronics & Drives	04		50	50				100	04
Distributed Generation	04		50	50				100	04
Open Elective - II	04		50	50				100	04
Lab Practice - I		04			25		25	50	02
Lab Practice - II		04			25		25	50	02
Total	16	8	200	200	50		50	500	20

Semester III Total Duration: 08hrs/w Total Marks :250 Total Credits: 20					8hrs/weel	¢			
Subjects Teaching Scheme (Hrs) Hrs./Week			Examination Scheme (Marks)						Credits
	L	Р	Theory	Internal Assessment	TW	PR	Oral	Total	
Seminar		02			50		50	100	05
Dissertation Stage - I		06			100		50	150	15
Total		08			150		100	250	20

Gemester IV Total Duration: 08hrs/week Total Marks :250 Total Credits: 20									
Subjects Teaching Scheme (Hrs) Hrs./Week			Examination Scheme (Marks)					Credits	
	L	Р	Theory	Internal Assessment	TW	PR	Oral	Total	
Dissertation Stage - II		08			150		100	250	20
Total		08			150		100	250	20

List of Self Learning Courses, Department Electives and Open Elective

Elective - I	Elective - II
Demand response & demand side	Power Sector Restructuring &
management	Deregulation
FACTS & HVDC	Smart Grid
Energy Storage Systems	Digital Protection of Power System

		Power System Modeling						
TEACHIN	NG SCHEME:	EXAMINATION SCHEME:	CREDITS ALLO	FTED:				
Theory: 0	4 Hours / Week	End Semester Examination: 50 Marks	Theory: 04 Credits					
		Internal Assessment: 50 Marks	Total: 04 Credits					
Course Ou	tcomes: After le	arning this course students will be abl	e to					
1	Describe and apply	y the mathematical modeling of power sy	ystem.					
2	Model and analyze	e the non electrical parameters.						
3	Develop, apply an line.	nd analyze the mathematical modeling	of transformers &	transmission				
4		ate the mathematical modeling of synchr	ronous machines					
5		d analyze the mathematical modeling of synchro		system				
3	Describe, apply an	d analyze the mathematical modering of		system.				
UNIT – I	Power System	Stability		(08 Hours)				
	¥	Statement of the Problem, Method	ls of Simulation,	,				
		f a Reliable Electrical Power Service, I						
	upon System C	components. Swing Equation, Units, N	Aechanical Torque,					
		Electrical Torque, Power-Angle Curve of a Synchronous Machine, Natural						
		Frequencies of Oscillation of a Synchronous Machine, System of One						
	0	Machine against an Infinite Bus-The Classical Model, Equal Area						
		Criterion, Classical Model of a Multi machine System, Classical Stability						
	Study of a Nine							
		Diagram of One Machine. Modeling of Non-Electrical Parameters						
UNIT – II	0		<u> </u>	(08 Hours)				
		s of power system analysis, Need						
		power system, Simplified models						
UNIT – II		h as boiler, steam & hydro turbine, gove cansformers & Transmission Line	mor system	(08 Hours)				
$\mathbf{U}\mathbf{U}\mathbf{U}\mathbf{U}\mathbf{U}\mathbf{U}\mathbf{U}\mathbf{U}\mathbf{U}\mathbf{U}$	0	odeling for two winding transformer,	tan-changer phase	(00 110015)				
		mer, three winding transformer and auto						
		transmission network, Transformatic						
		ng D-Q components, Steady state equation						
UNIT – IV		Iachine Modeling		(08 Hours)				
		ark's Transformation, Flux Linkage	Equation, Voltage					
		nulation of State-Space Equation, Curre						
	· ·	on, Normalizing Voltage equations, N						
	Equations, Torc	ue & Power Equivalent Circuit of Synch	ronous Machine					
UNIT – V	Load and Exc	itation System Modeling						
		deling concepts, Static load representation		(08 Hours)				
	-	Induction motor (as load) modeling, syn	chronous motor (as					
		acquisition of load model parameters	_					
	· -	tion systems, Control and protective system	-					
		ems (excitation system components an						
	×	e Response Ratio, Exciter voltage ratings						
Text Book								
		tem Dynamics", B.S. Publications		TT:11				
2. John J.	Granier & W.D. St	evenson Jr., "Power System Analysis ",	4 ^m Edition, McGraw	HIII				

International Student Edition

- 3. Olle Elegard, "Electrical Energy System Theory An Introduction", TMH Publishing Company, 2nd Edition
- 4. Kundur, "Power System Dynamics & Control", IEEE Press, New York

Reference Books:

- 1. Anderson & Foud, "Power System Control & Stability", Vol-I, IEEE Press, New York
- 2. P.S.R Murthy, "Power System Operation & Control"

Internal Assessment

Continuous evaluation by Assignments/Presentation/Quiz/Test

		Energy Audit & Power Quality Issues					
TEACHING	G SCHEME:	EXAMINATION SCHEME:	CREDITS ALL	OTTED:			
Theory: 04	Hours / Week	End Semester Examination: 50 Marks					
		Internal Assessment: 50 Marks	Total: 04 Credits				
Course Out	comes: After le	earning this course students will be able	to				
1		ze the concept of energy audit.					
2		luate the energy conservation and its econ	omics.				
3		te and evaluate the voltage sag.					
4		ze the transient over voltages.					
5	Review and anal	yze the harmonics.					
	1						
UNIT - I	Energy Aud			(08 Hours)			
		leed of energy audit, Preliminary and deta					
		or carrying out energy audit, Instruments					
		Analysis-Energy- production relationship					
		consumption, Sankey diagram, CUSUM Technique, Bench marking					
	••••	energy performance, Recommendations for energy conservation, Action					
		blan, Executive Summary.					
UNIT - II		Energy Conservation & its Economics					
	0.	ervation in motive power, Illumination, H	0 0				
		nping systems, Thermal power stations an					
		Sector. Cogeneration &Waste heat recover					
		Budgeting, Standard costing and Source	_				
	<u> </u>	and activity chart, Simple Pay back peri	-				
		oney, Net present value method, intern	al rate of return				
		itability index for benefit cost ratio.		(00 11)			
UNIT - III		swells and interruptions	nd definitions of	(08 Hours)			
		importance of power quality; terms a					
		ty as per IEEE std. 1159. Sources &					
	-	lems; Sources of sag; swell and interruption					
	0 0	performance; Fundamental principle end user level; utility systems and faul	1				
		ing sags; evaluation of the econom	Ū į				
	alternatives.	ing sags, evaluation of the econom	nes of unicielli				
UNIT - IV		ver- Voltages		(08 Hours)			
		ansient over voltages; capacitor switching	· lightening: Ferro				
		and other switching transients; Principles					
		devices of over voltage protections;					
		ansients; Utility system lightening prot					
	Ferro resonance; switching transients problems with loads; computer tools for transient analysis.						
UNIT - V		als of Harmonics and its Analysis		(08 Hours)			
		the Mechanism of Harmonic Generation	n. Definitions and				
		actors Influencing the Development of S					
		andards, General Harmonic Indices.	undurab, Existing				
	fiumonic St						

	Introduction to Harmonic Analysis; Fourier Series and Coefficients;					
	Simplifications Resulting from Waveform Symmetry; Complex Form of					
	the Fourier Series; Convolution of Harmonic Phasors; The Fourier					
	Transform; Sampled Time Functions; Discrete Fourier Transform					
	(DFT); The Nyquist Frequency and Aliasing; Fast Fourier Transform					
	(FFT); Window Functions; Efficiency of FFT Algorithms; Alternative					
	Transforms.					
Refere	nces:					
1.	Understanding power quality problems; voltage sag and interruptions - M. H. J. Bollen IEEE					
	press; 2000; series on power engineering.					
2.	2. "POWER SYSTEM HARMONICS", Second Edition By Jos Arrillaga and Neville R. Watson;					
	John Wiley and Publication, 2003 ISBN: 0-470-85129-5.					
3.	Electrical power system quality - Pogei C. Dugan; Mark F. McGranghan; Surya santoso; H.					
	Wayne Beaty; second edition; McGraw Hill Pub.					
4.	Power system quality assessment - J. Arrillaga; M.R. Watson; S. Chan; John Wiley and sons.					
5.	Electric power quality - G. J. Heydt.					
6.	Power system harmonics: Computer modeling and analysis- Enriques Acha; Manuel Madrigal;					
	John wiley and sons ltd.					
7.	Power System Harmonics – J. Arrillaga & N. Watson					
8.	IEEE std 519-1992/ IEEE std 1159 IEEE recommended practices and requirements for					
	harmonics control in electrical power system.					
9.	ECBC Code 2007 (Edition 2008) published by Bureau of Energy Efficiency; New Delhi					
	Bureau of Energy Efficiency Publications Rating System; TERI PUBLICATIONS GRIHA					
	Rating System; LEEDS Publications					

Internal Assessment

Continuous evaluation by Assignments/Presentation/Quiz/Test

TEACHING	POWER SYSTEM PLANNING AND RELIABILITY G SCHEME: CREDI	TS ALLOTTED:					
		04 Credits					
11100191 01		4 Credits					
Course Out	tcomes: After learning this course students will be able to						
1	Apply the concept of load forecasting.						
2	Explain the concept of substation design						
3	Evaluate the concept of reliability and generation system model.						
4	Illustrate the planning and reliability for transmission.						
5	Relate the concept of planning and reliability for distribution.						
UNIT - I	Lood Foregoting	(09 H ours					
UNII - I	Load Forecasting : Introduction, Factors affecting Load Forecasting, Load Research, Load Grader Structure	(08 Hours					
	Characteristics, Classification of Load and Its Characteristics, Load Foreca						
	Methods -(i) Extrapolation (ii) Co-Relation Techniques, Energy Forecasting,	U					
	Load Forecasting, Reactive Load Forecasting, Non-Weather sensitive						
	Forecasting, Weather sensitive load Forecasting, Annual Forecasting, Monthly						
	Forecasting, Total Forecasting, Objectives & Factors affecting to System Planning						
	, Short Term Planning, Medium Term Planning, Long Term Planning.						
UNIT - II	Substation Design						
	Bus Bar material, Isolating Switches, Voltage and current transformers,						
	Introduction, 3 winding- 2 winding transformer, tertiary winding (function and						
	rating), Determination of the bank rating, location, connection of capacitor bank,						
	Earthing system, Design of earthing grid						
UNIT - III	Generation Planning and Reliability :	(08 Hours)					
	Reliability, Failure, Concepts of Probability, Evaluation Techniques (i) Markov						
	Process (ii) Recursive Technique, Stochastic Prediction of Frequency and						
	Duration of Long & Short Interruption, Adequacy of Reliability, Reliability						
	Objectives & Factors affecting Generation Planning, Generation Sol						
	Integrated Resource Planning, Generation System Model, Loss of						
	(Calculation and Approaches), Outage Rate, Capacity Expansion, Sche						
	Outage, Loss of Energy, Evaluation Methods. Interconnected System, Fa affecting interconnection under Emergency Assistance.						
UNIT - IV	Transmission Planning and Reliability	(08 Hours)					
	Transmission Planning and Reliability: Introduction, Objectives of Transmi						
	Planning, Network Reconfiguration, System and Load Point Indices, Data rec						
	for Composite System Reliability.						
UNIT - V	Distribution Planning and Reliability	(08 Hours					
	Radial Networks – Introduction, Network Reconfiguration, Evalu						
	Techniques, Interruption Indices, Effects of Lateral Distribution Prote						
	Effects of Disconnects, Effects of Protection Failure, Effects of Transfe						
	Loads, Distribution Reliability Indices. Parallel & Meshed Networ	-					
	Introduction, Basic Evaluation Techniques, Bus Bar Failure, Sche	duled					
	Maintenance, Temporary and Transient Failure, Weather Effects, Breaker Fai	lure					

Text Books:					
1. Roy Billinton& Ronald N. Allan, Reliability Evaluation of Power System - Springer Publication.					
2. R.L. SullivanPower System Planning -, Tata McGraw Hill Publishing Company Ltd.					
3. Miler& Freund's, Probability and Statistic for Engineers, Pearson Education, Richard Johnson.					
Reference Books:					
1. X. Wang & J.R. McDonald, Modern Power System Planning –, McGraw Hill Book Company					
2. T. Gönen, Electrical Power Distribution Engineering - McGraw Hill Book Company					
3. B.R. Gupta Generation of Electrical Energy –, S. Chand Publications					
4. A.S. Pabla, Electrical Power Distribution Tata McGraw Hill Publishing Company Ltd.					
5. T.W.Berrie, Electricity Economics & Planning –, Peter Peregrinus Ltd., London					
6. "Power System Planning", Hyde M.Merrill, 3 rd Edition, CRC press					
Internal Continuous evaluation by Assignments/Presentation/Quiz/Test					
Assessment					

	Elective - I: De	emand Response and Demand Side Mana	agement				
TEACHINO	G SCHEME:	EXAMINATION SCHEME:	CREDITS AL	LOTTED:			
Theory: 04	Hours / Week	End Semester Examination: 50 Marks	Theory: 04 Cre				
		Internal Assessment: 50 Marks	Total: 04 Credi	its			
Course Out	comos. After learning	this course students will be able to					
<u>1</u>		of Demand Side Management.					
2	^	residential and commercial Demand Side N	Management				
3	*	e the different techniques of Demand Side N	<u> </u>				
4		the different measures and regulatory ac		savings and			
	money savings.		25	U			
5		the measures of Demand Side Managemen	nt.				
UNIT - I	Introduction			(08 Hours)			
		concept of DSM, benefits of DSM, Cost					
		es, reliability and network motives,	Challenges of				
	implementing DSM pro						
UNIT - II	Residential and comm			(08 Hours)			
			anagement and				
UNIT - III	organization of energy conservation awareness programs Ongoing programmes and initiatives						
	Different techniques of DSM – time of day pricing, multi-utility power exchange						
	model, time of day models for planning, load management, load priority						
	technique, peak clipping, peak shifting, valley filling, strategic conservation,						
	energy efficient equipm						
UNIT - IV	Energy savings action			(08 Hours)			
		payback time actions, Medium payback					
		easures. regulation for energy efficiency, t					
	-	atory options, upgradation of standards	and equipment				
	labeling with reference			(00 II			
UNIT - V	Types of DSM measure		and growth and	(08 Hours)			
	•••••••••••••••••••••••••••••••••••••••	rammes, Load management programmes, Information dissemination on DSM	Load growth and				
	conservation programm	ics, information dissemination on DSW					
References:							
	ricity Demand-side Man	agement, prepared by the Treasury, New Ze	ealand, October 20	005			
		Demand Side Management Technologie					
-		ed 06 July 06 on http://dsm.iea.org	C				
3. Energ	gy Efficiency and Dema	nd Side Management, Course Module, Ur	niversity of Warw	rick, REEEP,			
	2005						
Reference B							
	_	nt Planning [Hardcover] BY : Clark W	V. Gellings (Auth	or), John H.			
	nberlin (Author)						
		demand-side management By : <u>Montana. I</u>	Dept. of Natural R	esources and			
		Bonneville Power Administration	nd Covernment C	Juppenstand			
5. E	nergy conservation and	Demand Management Program." Queenslar	na Ooverninent. Ç	Laccustana			

Government, n	Government, n.d. Web. 2 Dec 2010.					
4. Bradbury, Danny. "Volatile energy prices demand new form of management." Business Green.						
Association of	Association of Online Publishers, 05 Nov 2007. Web. 2 Dec 2010.					
Internal	Continuous evaluation by Assignments/Presentation/Quiz/Test					
Assessment						

TEACHING Theory: 04				
Theory. or	Hours / Week End	MINATION SCHEME: Semester Examination: 50 Marks	Theory: 04 Cre	LOTTED: dits
		mal Assessment: 50 Marks	Total: 04 Credi	
	Inter	nar Assessment. 50 Warks	10101. 04 Cicul	115
Course Outo	comes: After learning this	course students will be able to		
<u>1</u>		nission controllers and converter top	ologias issues	
2		series and shunt compensation.	ologies, issues.	
$\frac{2}{3}$	5	1		
<u> </u>	Evaluate the concept of Unified power flow controller.Categorize and compare the different configurations of HVDC link, converter conr			
<u> </u>			link, converter con	nections.
5	Identify and list out the mu	ti terminal HVDC Systems.		
				(00 II
UNIT - I	FACTS		01	(08 Hours
		crease transmission capacity, Series		
		Synchronous condensers, Flexible		
		es and needs, Static Power converte		
		DC link converter topologies, Conv	erter output and	
	harmonic control, Power con			(00 11
UNIT - II	Shunt and Series Compensation:			(08 Hours
	Operation and control of thyristor controlled reactor, Thyristor switched			
	Capacitor, SVC, STATCOM configuration and control, Applications of SVC,			
	Power oscillation damping, Mitigation of sub-synchronous resonance, TCSC			
	operation, Layout and protection, Applications of TCSC, Static Synchronous			
	Series Compensator (SSSC)			(00 11
UNIT - III	Unified Power Flow Contro			(08 Hours)
	0 1	ndent real and reactive power flow		
	scheme for UPFC, Basic control system for P and Q control, Dynamic			
	performance, Operational constraints of UPFC, Power flow studies in UPFC			
	embedded systems.			
	Conorol Poolsground of IIV	DC Trongmission.		(00 II
UNIT - IV	General Background of HV			(08 Hours
		nsmission, Different configurations		
	1 1	Back, Power flow through HVDC 1	· .	
		ctions of three phase six pulse a		
	<u> </u>	and current waveforms. Effect	of delay angle,	
	Extinction angle, Overlap ang	gie, Control of DC voltage		(00 TT
UNIT - V	Multi Terminal HVDC:		<u> </u>	(08 Hours
	1	Converter transformer connect		
	•	or earth return to metallic return, H	-	
		nents in a bipolar HVDC termin	-	
	•	DC circuit breakers, DC curre	-	
		obable types and applications of		
		DC systems, Parallel tapping, Re	-	
	• • •	multi-terminal HVDC systems, C	ommercial multi	
	terminal systems			

Text Books:					
1. E.Acha, V.A.Agelidis, O.Anaya-lara and TJE MillerNewnes, Power Electronic control in Electrical					
Systems Oxford.					
2. N.G. Hingorani and L.Gyugi, Understanding FACTS- IEEE Press, New York.					
3. J. Arrilaga, Y.H.Liu and N.R.Watson, Flexible Power Transmission- The HVDC Options,					
Reference Books:					
1. T J E Miller, "Reactive Power Control in Electric Systems", John Wiley					
2. Padiyar K R "FACTS Controllers in Power Transmission & Distribution", New Age.					
3. R. Mohan and R.K.Varma, "Thyristor-Based FACTS Controllersfor Electrical Transmissio					
Systems", IEEE Press.					
Internal Continuous evaluation by Assignments/Presentation/Quiz/Test					
Assessment					

TEACUINA		I: Energy Storage Systems IINATION SCHEME:	CREDITS ALI	ОТТЕР.		
		mester Examination: 50 Marks				
Theory: 04		Anester Examination: 50 Marks	Theory: 04 Cred Total: 04 Credit			
	Interna	Assessment: 50 Marks	Total: 04 Credit	S		
Course Out	comes: After learning this cours	e students will be able to				
1	Learn about economics of ES					
2	Explain Energy Storage sourc	e andstorage systems.				
3	Illustrate battery chargers and battery testing procedures.					
4		system and other energy storage s	systems.			
5	Examine recycling technologi	· · · ·	J			
UNIT - I	Electrical Energy Storage:			(08 Hours		
	Introduction to energy storage	sources and storage, requirement				
	electric vehicles. Capacitor, Batter	y, Fuel cell, Supercapacitor and t	their comparison,			
	AC/DC capacitors, Challenges in c	concept of hybridization of differe	nt energy storage			
	devices. High capacity and low cap	pacity applications of energy stora	ge devices.			
UNIT - II	Energy Storage Source and Stor	age Systems:		(08 Hours		
	LAB all aspects, Lithium Batte	eries (LMO, NMC, LFP and	LTO with their			
	comparative study) and sodium ion, Zinc air, Aluminium –air batteries, Lithium					
	supercapacitor, Asymmetrical supercapacitors, supercapacitors and battery					
	combination for e-mobility application, Classification of Fuel Cells,Specifications of					
	Fuel cells, Hydrogen Storage, Role of various EES, Emerging needs of EES					
UNIT - III	Battery Chargers and Battery Te			(08 Hours		
	Introduction to various battery charging guns/ chargers, constant current and constant					
	voltage, trickle charging method					
	constructions, Battery specifications, Battery capacity tester, Battery testing for					
	urban and highway driving cycles, testing for limiting thermal runaway and safety.					
UNIT - IV	Battery Management System and			(08 Hours		
	Concept of C rating, Wh and Ah					
	passive cell balancing, Fundament		•			
	and controls. Batteries, Flywheel					
			energy storage			
	(SMES),Parameters and character		0,			
	applications.					
UNIT - V	Recycling Technologies and Batt	ery Charging:		(08 Hours		
	Introduction to IS 17387: 2020	• • •	pects of battery			
	recycling, lead acid battery recycli					
	in battery industry.	6	8, a m j			
		lection and sizing of charging stat	ion. Components			
	Types of EV charging stations, Selection and sizing of charging station, Components and specification of charging station, introduction to various charging system guns					
	and their comparative study, V2X					
	and their comparative study, V2X					
References:		concept				
1. Energy	· · · · · · · · · · · · · · · · · · ·	concept .G. Tar-Gazarian, IET Power & E	nergy Series 63, Pe	ter Peregrine		

Atrium, Southern Gate, Chichester, West Sussex, PO19 S8Q, England.						
3. Report: Validatin	3. Report: Validating Modeling of Electrochemical Energy Storing Devices. Niklas Mellgren, Sept. 20					
Royal Institute of	Technology, SE-100 44 Stockholm, Sweden.					
4. Energy Storage, R	obert A. Huggins, Springer. DOI 10.1007/978-1-4419-1024-0					
5. Energy Storage,	Richard Basxter, PenWell Corporation, 1421 South Sheridan Road, Tulsa, Oklahoma					
74112-6600 USA						
6. Large Energy Stor	rage System, Frank Barnes, Jonah Levine, Tayler & Fransis Group, CRC Press.					
Internal Assessment Continuous evaluation by Assignments/Presentation/Quiz/Test						

	Lab Practice I				
TEACHING S	CHEME:	EXAMINATION S	CHEME:	CREDITS ALLOTTED:	
Practical: 04 H	ours / Week	TW: 25 Marks &	OR: 25 Marks	Practical: 02 Credits	
				Total: 02 Credits	
Objective					
То	develop the analytical ar	d practical skills in the	e students.		
Course Outcon	nes: Upon useful com	pletion of this lab stu	dents will be able to		
1	Apply the knowledge	to design the practical	circuits for application	ons	
2	Model and simulate d	ifferent electrical and e	electronics systems		
3	Simulate and test the	circuit performance for	r comparative study.		
The	lab practice -1 will be	comprising of at least	st TWO experiments	from each of the	
cou	rses such as representat	ion of Power System	Elements like Synch	nronous machines,	
tran	sformers, transmission l	ines, loads, power sys	tem load flow, short	circuit studies and	
ром	ver system stability studi	es, modeling of energy	y storage devices and	renewable energy	
syst	systems using MATLAB-SIMULINK, ETAP, CAPS software.				

TEACHING Practical: 04		EXAMINATION S	CHEME.	
Practical: 04	Hours / Week		<u>CHENIE:</u>	CREDITS ALLOTTED:
	IIUUIS / WUUK	TW: 25 Marks &	OR: 25 Marks	Practical: 02 Credits
				Total: 02 Credits
Objective				
Т	o develop the analytic	cal and practical skills in the	e students.	
	1 2	•		
Course Outco	mes: Upon useful	completion of this lab stu	dents will be able to	D
1	Apply the knowl	edge to design and analyze	the power system.	
2	Evaluate the mod	del for optimization.	• •	
3	Conclude the stu	dy with future scope.		
Tł	ne lab practice -II is	based on topics for Design	n and analysis of	Power system by
	oplication software		5	5 5

	Po	wer System Dynamics and Stability		
TEACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS AL	LOTTED:
Theory: 04	Hours / Week	End Semester Examination: 50 Marks	Theory: 04 Cre	dits
		Internal Assessment: 50 Marks	Total: 04 Credi	ts
Course Out		is course students will be able to		
1		e classical methods of power system dynar	nics	
2	Inspect and estimate s	<u> </u>		
3	*	te large signal analysis methods		
4	Discuss power system			
5	Compare and compile	e multi machine system.		
UNIT - I		ver System Dynamic Studies	· · · ···	(08 Hours)
		constraints in power system operation,		
	diagram, concept of system security and stability, classical model of system of one			
	machine connected to infinite bus, Clark diagram for two machines series reactance system, extension of Clark diagram to cover any reactance network, elementary			
	model of overall power system			
UNIT - II	Small Signal Stability		(08 Hours)	
		lysis of synchronizing & damping torque	state equation	(00 110013)
	for small signal model, Simplified synchronous machine model, calculation of initial			
	conditions, system simulation, improved model of synchronous machine, small			
	signal stability of multi machine system			
UNIT - III	Large Signal Analysis			(08 Hours)
	Elementary view of transient stability, Large signal analysis, Analysis using			
	numerical integration methods (Modified Euler's, Runge-Kutta), Simulation of			
	power system dynamic response, Analysis of unbalanced faults, Case study of a			
	large system			
UNIT - IV	Power System Stabilizer			(08 Hours)
		signals in power system stabilizers (PSS		
		on, PSS design and application, Future tree	nds	(0.0.77
UNIT - V	Multi-machine system	1 11 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	(08 Hours)
	- · · ·	ed model of the system for linear load, Ir	nclusion of load	
	and SVC, Introduction to a	analysis of large power system		
Deferences				
References:		nomics" D.S. Dublications		
	Padiyar, "Power System Dy			
	haKundur, "Power system S .Taylor, "Power System Vol			
Internal As		valuation by Assignments/Presentation/Qui	z/Test	
Internal AS	sessment Continuous ev	auation by Assignments/Presentation/Qui	2/1081	

		Advanced Power Electronics & Drives		
TEACH	ING SCHEME:	EXAMINATION SCHEME:	CREDITS AL	LOTTED:
Theory:	04 Hours / Week	End Semester Examination: 50 Marks	Theory: 04 Cre	
		Internal Assessment: 50 Marks	Total: 04 Credi	ts
0				
		rning this course students will be able to		4 4 1
1		voltage source converters for harmonic eli	imination and vol	tage control.
2 3		develop current source convereters. e the multilevel inverters for reactive powe	rannangation	
<u> </u>	Choose and design the		a compensation.	
5	0	e synchronous motor drives.		
U				
UNIT - I	I Voltage Source	Converters		(08 Hours)
	0	full wave bridge converter, operation and	d harmonics, 3	
		rce converters. PWM converter. Generalized		
		nation and voltage control. Advance		
		e vector modulation, 3 rd harmonic PWM)	Comparison of	
TINITA	*	. Converter rating.		(00 II
UNIT - I			of working	(08 Hours)
		verter: 3×3 matrix converter, principle		
		mathematical treatment, comparison of matrix converter with multipulse converter		
		commutated current source converter: Basic concepts of		
		with self commutating devices	Ĩ	
UNIT - I	III Multilevel Inver	Multilevel Inverters		(08 Hours)
		ept, Types of multilevel Inverters, c		
		multilevel inverter, flying-capacitors multilevel inverters, cascaded		
		er, switching device currents, D.C. link ca		
		res of multilevel inverters, comparison		
		inverters. Applications of multilevel Inverter: Reactive power compensation Back to back intertie system		
UNIT - I		ek to blek interne system		(08 Hours)
		3 phase converter drives. Four quadrant (Chopper drives,	(***********
	0 1	ol of DC motor, Permanent magnet DC me	1 1	
	Servo drives, app	lications		
UNIT -				(08 Hours)
	0 1	ency control, closed loop control of synch		
		tor servo drive with sinusoidal waveform		
	motor servodrive	with trapezoidal waveform. Load comm	nutated invertor	
	drives, speed c	ontrol of synchronous motors by cy	clo-convertors,	
	applications			
			•	
Referen				
		power electronics and AC drives, Pearson	education asia	
		ntals of Electrical Drives CRC press 2002		1
3. N	1. H. Rashid Power Ele	ectronics, Prentice Hall of India Pvt. Ltd. N	lew Delhi, (3rd E	dition)

4. R Krishnan, Electric motor drives, modeling, analysis and control, PHI learning Pvt. ltd. 2001					
5. S.K. Pillai, A first course in electrical drives, Newage international publishers. 2010					
Internal Continuous evaluation by Assignments/Presentation/Quiz/Test					
Assessment					

		Distributed Generation		
TEACHIN	G SCHEME:	EXAMINATION SCHEME:	CREDITS A	LLOTTED:
Theory: 04	4 Hours / Week	End Semester Examination: 50 Marks	Theory: 04 Cr	
		Internal Assessment: 50 Marks	Total: 04 Cree	lits
		arning this course students will be able	to	
1		uted generation needs and future.		
2		borate grid integration, Integration of	mini and micr	o generation in
3	distribution grids.	le the protection of distributed generation.		
<u> </u>		er quality disturbances in distributed generation.	ration	
5		rid applications in distributed generation.	ation.	
	bubblig the sinut g	nd approactions in abarroacea generation		
UNIT - I	Introduction			(08 Hours)
-	Definition, Int	egration in power systems, Distribute	ed generation	
	advantages, ne	eds and technology trends. Implication	is of DG on	
		tem Economical and Financial aspects of		
	-	study of DG in electric power system	n, Future of	
UNIT - II	Distributed gen			(08 Hours)
UNII - 11			fuel cells and	(08 Hours)
	Microturbines, wind generators, photovoltaic generators, fuel cells, and other technologies. Integration of mini and micro generation in			
		ds. V2G integration. The electric grid vs		
		historic perspective. Grid interconnec		
	planning, advar	ntages and disadvantages both for the grid	and the micro	
	grid.			
UNIT - III		eneration Protection		(08 Hours)
		ls protection, Problems in distributed grid		
		erconnection relaying, sensing using C unintentional islanding of distribution system		
		ction of unintentional islands, non detection		
UNIT - IV		Disturbances in DG		(08 Hours)
	~ /	tributed generation on power system,	Fast voltage	
		wind power and solar power), rapid vol	tage changes,	
		narmonics, High Distortions, Voltage dips		
UNIT - V	•	plications in DG		(08 Hours)
		es of smart grid, advantages, challenges of		
		of DG in smart grid, smart grid powe	er control in	
	alstributed gene	eration environment.		
References	:			
		and Efficient Electric Power Systems		
		y Vittal, Power Systems Analysis, Prentice	e Hall,1999.	
		ted Generation, Publisher: InTech.	-	
	ributed Generation 9264175976 (PDF)	in Liberalised Electricity Markets Interr	national Energy	Agency ISBN:
		gration of Distributed Generation in the	Power System"	, Wiley & Sons

Publication.	
Internal	Continuous evaluation by Assignments/Presentation/Quiz/Test
Assessment	

	Elective	II: Power Sector Restructuring & Dereg	gulation		
TEACHIN	NG SCHEME:	EXAMINATION SCHEME:	CREDITS AL	LOTTED:	
Theory: 0	4 Hours / Week	End Semester Examination: 50 Marks	Theory: 04 Cre	dits	
		Internal Assessment: 50 Marks	Total: 04 Credi	its	
Course Ou	utcomes: After le	arning this course students will be able to)		
1	Explain the power				
2	Relate the fundam	entals of economics and power sector regul	ation.		
3	Simplify the powe	r tariff.			
4		sector restructuring and market reform.			
5	Examine the electr	ricity markets pricing and non-price issues.			
UNIT - I	Power Sector i			(08 Hours)	
		various institutions in an Indian Power			
		Commissions, PGCIL, PFC, Ministry of P			
		ments, REC, CERC, MNRE, Load Dis			
		eir roles. Critical issues / challenges ber			
		Electricity act 2003-Provision in the Distribution Sector Various national			
		Transmission Distribution Sector, Various national policies and guidelines under this act.			
UNIT - II	U	of Economics& Power Sector Regulation		(08 Hours)	
	Fundamentals		ower Sector,	(00 110015)	
	Consumerbehav				
	Long- run cos				
	Ũ				
		C), Average variable cost (AVC), Average MC), Relationship between short-run and lo			
	-	· · · · · · · · · · · · · · · · · · ·			
	•	costs, Perfectly competitive market, Concept of life cycle cost, Annual rate of return, methods of calculations of Internal Rate of Return(IRR)			
		and Net Present Value(NPV) of project, Role of regulation and evolution			
		of regulatory commission in India, Types and methods of economic			
		ulatory process in India.			
UNIT - III				(08 Hours)	
	Different tariff	principles (marginal cost, cost to serve, aver	rage cost),		
	Consumer tari	ff structures and considerations, diffe	rent consumer		
	categories, tele	scopic tariff, fixed and variable charges	, time of day,		
	interruptible tar	iff, and different tariff based penalties and	incentives etc.,		
	Subsidy and cr	oss subsidy, life line tariff, Comparison of	different tariff		
		ifferent load patterns. Government policie			
		fect of renewable energy and captive powe			
		ty based tariff, Latest reformsand amendme	ents		
UNIT - IV		estructuring and market reform		(08 Hours)	
		power sector restructuring, Reasons for	-		
		power industry, Understanding the restruct			
		ved, The levels of competition, The			
		d Sector-wise major changes required, Di			
		ownership models, Market models based			
	arrangements-N	Ionopoly Model, Single buyer Mod	el, Wholesale		

	competition model and Retail competition model, Marketarchitecture,					
	Timeline for various energy markets, Bilateral / forward contracts, The					
	spot market, Models for trading arrangements, ISO or TSO					
	model, Reasons and objectives of deregulation of various power systems					
	acrossthe world-The US, The UK, The Nordic Pool and The developing					
	countries.Congestion Management, Ancillary Services					
	Electricity Markets Pricing and Non-price issues	(08 Hours)				
	Electricity price basics, Market Clearing price (MCP), Zonal and					
	locational MCPs, Dynamic, spot pricing and real time pricing, Dispatch					
	based pricing, Power flows and prices. Optimal power flow Spot prices					
	for real and reactive power. Unconstrained real spot prices, constrains and					
	real spot prices.Non price issues in electricity restructuring (quality of					
	supply and service, environmental and social considerations), Global					
	experience with electricity reforms in different countries.					
References:						
1. Loi Lei	Lai, 'Power System Restructuring & Deregulation, John Wiley & Sons Ltd.					
2. "Know	Your Power", A citizens Primer On the Electricity Sector, Prayas Energy G	roup, Pune				
	: Utility Planning and Regulation, Edward Kahn, American Council for Ene					
Econon		23				
4. D. S. K	Kirschen& G. Strbac,'Fundamentals of Power System Economics', John W	Viley & Sons				
Ltd.						
5. Centra	5. Central Electricity Regulatory Commission, Regulations and Orders - <u>www.cercind.org</u>					
	6. "Power System Planning", Hyde M.Merrill, 3 rd Edition, CRC press					
	, , , , , , , , , , , , , , , , , , , ,					
Internal	Continuous evaluation by Assignments/Presentation/Quiz/Test					
Assessment						

TEACHI	NG SCHEME:	EXAMINATION SCHEME:	CREDITS AL	LOTTED:		
	04 Hours / Week	End Semester Examination: 50 Marks	Theory: 04 Cre			
J		Internal Assessment: 50 Marks	Total: 04 Credi			
Course C	outcomes: After l	earning this course students will be able	to			
<u>course c</u> 1	Discuss the basic					
2		pare the smart grid technologies.				
3		onclude the smart grid technologies.				
4		ver quality management in smart grid.				
5		le the information and communication tech	nology for smart g	rid		
J	Identify and deek		mology for smart g	110.		
UNIT - I	Introduction			(08 Hours		
	Concept, Nee	ds and Functions of Smart Grid, Opportur	nities & Barriers,			
		tween Conventional & Smart Grid, Conce				
		Grid, Present Developments & Internati	-			
	Smart Grid	· ·				
UNIT - I	I Smart Grid	Fechnologies		(08 Hours		
	Smart Subs	ations, Substation Automation, Feed	er Automation,			
	Geographic In	nformation System (GIS), Plug-in Hybrid	Electric Vehicles			
	(PHEV), Veh	icle to Grid, Smart Sensors, Home & Build	ling Automation,			
		g Transformers				
UNIT - I		Smart Meters and Advanced Metering Infrastructure				
		to Smart Meters, Real Time Pricing, Sr				
		Automatic Meter Reading (AMR), Outage Management System (OMS),				
		Intelligent Electronic Devices (IED) & Their Application for Monitoring				
		& Protection, Smart Storage, Wide Area Measurement System (WAMS),				
		Phase Measurement Units (PMU)				
UNIT - I	· · ·	y Management in Smart Grid		(08 Hours		
		y and Energy Management in Smart Grid				
		Quality Conditioners for Smart Grid, W	eb Based Power			
		toring, Power Quality Audit		(0.0.77		
UNIT - V		and Communication Technology for Sm		(08 Hours		
		etering Infrastructure (AMI), Home Area				
	0	Area Network (NAN), Wide Area N				
		ig-Bee, GPS, Wi-Fi, Wi-Max Based				
		sh Network, Basics of CLOUD Compu	•			
	Protocols	Smart Grid, Broadband Over Power line	(DPL), IP Dased			
	FIOLOCOIS					
Referenc	٩٤•					
		nad N. Marwali, Min Dai "Integration of C	Green and Renewal	ole Energy in		
	ectric Power System	-	Steen und Renewa	Sie Ellergy II		
		he Smart Grid: Enabling Energy Efficienc	y and Demand Re	sponse".CR(
		te, Nick Jenkins, Kithsiri Liyanage, Jianzh				
	•	gy and Applications", Wiley				
Sr		gy and Applications, whey				

- 4. Tony Flick and Justin Morehouse, "Securing the Smart Grid", Elsevier Inc. (ISBN: 978-1-59749-570-7)
- 5. Peter S. Fox-Penner, "Smart Power: Climate Change, the Smart Grid, and the Future of Electric Utilities"

Internal	Continuous evaluation by Assignments/Presentation/Quiz/Test
Assessment	

	Ele	ctive II: Digital Protection of Power Sys	stem			
TEACHIN	NG SCHEME:	EXAMINATION SCHEME:	CREDITS ALI	LOTTED:		
Theory: 04 Hours / Week		End Semester Examination: 50 Marks	Theory: 04 Crea	lits		
-		Internal Assessment: 50 Marks	Total: 04 Credit	S		
Course Ou	itcomes: After le	arning this course students will be able	to			
1	Discuss the need of	f power system protection and digital prot	ection.			
2	Compare and deci	de the relays for protection.				
3	Elaborate the elem	ents of digital protection.				
4		e the scheme for protection of transmissio				
5	Recommend the s	cheme for transformer and generator prot	ection. Also devel	lop the model		
	with artificial intel	ligence.				
UNIT - I	Introduction:			(08 Hours)		
		system protection, Digital Protection: Sta				
		sor relaying scheme, Power System Co				
		Protection Scheme, Section of Protection				
		Relays, Types and Applications. Archited	cture of Modern			
	Digital Relay					
UNIT - II	Static Relays:			(08 Hours)		
		5 Static Relay, Overcurrent Relay, 1	•			
		emes of transmission lines, Switched dista	• • •			
		phase relay, Relay as Comparator - Dual input Comparator, Relay characteristics by comparison of constants, Multi-input comparator, Pilot				
			-			
		Relaying Scheme. An Expert System (ES) for Protective Relay Settings: Introduction, Problem Description, ES Approach, Typical Application.				
UNIT - III		gital Protection:	Application.	(08 Hours)		
01111 - 111		ents of a digital relay, Signal condition	ning subsystem.	(00 110013)		
		Surge protection circuits, Analog filter				
		conversion subsystems, Sampling Theore				
		error, Sample and hold circuit, Digit				
		og conversion, Analog to digital conversi				
	-	ital relay as unit	,8,			
UNIT - IV		ion of Transmission Line:		(08 Hours)		
	0	me of transmission line, Distance Relay,	Travelling wave			
		protection scheme based on fundamental	U			
	design, softwar	e design, Digital protection of EHV/UI	IV transmission			
	line based on t	ravelling wave phenomena, New relayir	ig scheme using			
	amplitude comp	parison				
UNIT - V		ion of Transformer and Synchronous G		(08 Hours)		
		former, Schemes used for Transformer Pr	otection, Digital			
	Protection of Tr					
		hronous generator, Protection schemes f	for Synchronous			
	-	al Protection of Synchronous Generator.				
		FL) for Power system Protection: Introd				
	-	Approach, Artificial Neutral Network				
	Selection: Intr	oduction, Problem Description, Measur	rement of fault			

generate	ed in high frequency components, ANN Approach.				
References:					
	tion – Protective Relaying from Electro-Mechanical to Microprocessor" By L.P.				
Singh. 2 nd Edit	ion, Reprint-2004, New Age International Publisher, New-Dehli.				
2. "Digital Power	System Protection" By S.R. Bhide. PHI Learning Private Limited, New Delhi.				
3. "Artificial Inte	lligence Techniques in Power Systems", By Kevin Warwick, Auther Ekwue &				
Raj Aggarwal,	Publication : Institution of Electrical Engineers, London, UK.				
4. "Digital Protec	tion for Power system" by A.T Johns and S.K. Salman. Peter Peregrinus Ltd. Of				
The Institute o	f Electrical Engineers, London, United Kindom.				
5. "Soft Comput	5. "Soft Computing Techniques and its Applications in Electrical Engineering" By Dr. Devendra				
Chaturvadi, Pu	blication: Springer – Verlag Berlin Heidelburg.				
6. "Power System	6. "Power System Protection 4: Digital Protection and Signalling" edited by ETA Electricity				
Training Assoc	tiation. Published by Institute of Engineers, London, UK.				
7. "Digital Signal	7. "Digital Signal Processing in Power System Protection and Control" By Waldemar Rebizant,				
Janusz Szafran, Andrzej Wiszniewski.					
	•				
Internal	Continuous evaluation by Assignments/Presentation/Quiz/Test				
Assessment					

	Lab Practice I				
TEACHING	SCHEME:	EXAMINATION SO	CHEME:	CREDITS ALLOTTED:	
Practical: 04	Hours / Week	TW: 25 Marks &	OR: 25 Marks	Practical: 02 Credits	
				Total: 02 Credits	
Objective					
Т	To develop the analytical an	nd practical skills in the	students.		
Course Outc	omes: Upon useful com	pletion of this lab stu	dents will be able to		
1	Apply the knowledge	to design the practical	circuits for application	ons	
2	2 Model and simulate different electrical and electronics systems				
3	Simulate and test the	circuit performance for	comparative study.		
Т	The lab practice -1 will be	comprising of at leas	t TWO experiments	from each of the	
C	courses such as power electronics for electric motors, effect of varying duty on selection				
0	of drives for energy efficient motors etc and Study of power semiconductor devices AC to				
D	DC, DC to DC converter circuits etc using software, design as well as building up the				
ci	circuits in laboratories using MATLAB-SIMULINK, ETAP, CAPS and Ansys software.				

Lab Practice II						
TEACHING SO	CHEME:	EXAMINATIO	ON SC	CHEME:	CREDITS ALLOTTED:	
Practical: 04 H	ours / Week	TW: 25 Marks	&	OR: 25 Marks	Practical: 02 Credits	
					Total: 02 Credits	
Objective						
Тос	levelop the analytical a	nd practical skills	in the	students.		
Course Outcom	-	· ·		ents will be able to		
1	-		for E	lectric Vehicles, Hy	ybrid Electric Vehicles and Plug	
	in Hybrid Electric Ve					
2	Select energy sources		es and	motors required for	EVs and HEVs	
3	Design EV & HEV s	ystem				
The lab pra	actice -II is based on top	oics for Design and	d Anal	ysis of EV.		
	•	z PHV, Basics of I	$\exists V \&$	HEV, Architectures	s of EV and HEV, HEV	
fundament		1. (D				
				0	Fuel economy of PHEVs,	
					ction, Principles of power	
					nd HEVs, Emerging power	
				U	t motor drives, Brushed &	
				· · ·	tors, Fuel Cells, Controls, n efficiency, Consideration	
•			0			
	of vehicle mass, Electric vehicle chassis & body design, General issues in design. Introduction,					
	Fundamentals of vehicle system modeling, HEV modeling using ADVISOR & PSAT, Case studies - Rechargeable battery Vehicles, Hybrid vehicles.					
Rechargea	ble ballery vehicles, Hy	onu venicies.				

References:

1. Chris Mi, M. AbulMasrur, David WenzhongGao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", 2011, Wiley publication.

2. Allen Fuhs, "Hybrid Vehicles and the future of personal transportation", 2009, CRC Press.

3. James Larminie, John Lowry, "Electric Vehicle Technology Explained", 2003, Wiley publication.

Seminar					
TEACHING SCHEME:EXAMINATION SCHEME:CREDITS ALLOTTED:					
Practical: 02 Hours / Week	TW: 50 Marks	Total: 05 Credits			
	OR: 50 Marks				

Objective

To develop the analytical and practical skills in the students.

Course Outcomes: Upon useful completion of this lab students will be able to

- **1** Identify, summarize and critically evaluate relevant literature and write a literature review on the relevant topic
- 2 Show evidence of clarity of argument, understanding of the chosen topic area and presentation of technical information
- **3** Develop written and oral presentation skills.

Seminar-I shall be on state of the art topic of student's own choice based on relevant specialization approved by an authority. Student should deliver seminar on the topic in front of the external examiners/internal examiners, faculty members and students.

Prior to presentation student should carry the details of literature survey form standard references such as international journals and periodicals, recently published reference books etc. The student shall submit the duly certified seminar report in standard format, for satisfactory completion of the work by the concerned Guide and Head of the department. The assessment shall be based on selection of topic and its relevance to present context, report documentation and presentation skills.

		Dissertation Stage - I				
TEAC	EACHING SCHEME: EXAMINATION SCHEME: CREDITS ALLOTTED:					
Practica	al: 06 Hours / Week	6 Hours / Week TW: 100 Marks				
		OR: 50 Marks				
Object	ive					
	To develop the analyti	cal and practical skills in the students.				
Course	e Outcomes: Upon usefu	l completion of this lab students will be ab	ole to			
1	Identify key research an	d development topics in the field of chosen	dissertation area (Power electronics,			
	Electrical machines, elec	ctrical drives, Energy systems and any interd	isciplinary area)			
2	2 Identify, summarize and critically evaluate relevant literature and write a literature review on the relevant					
	topic.					
3	Manage time effectively whilst working on independent research and prepare action plan.					
4	Show evidence of clari	ty of argument, understanding of the cho	sen topic area, and presentation of			
	technical information					

5	Develop written and oral presentation skills.	
]	The M. Tech. project is aimed at training the students to analyze independently any problem in the	
f	ield of Electrical Engineering or interdisciplinary. The project may be analytical, computational,	
e	experimental or a combination of three. The project report is expected to show clarity of thoughts	
8	and expression, critical appreciation of the existing literature and analytical, experimental,	
C	computational aptitude. The student progress of the dissertation work will be evaluated in stage I	
(after semester III) by the departmental evaluation committee.	
]	References:	
1	. Various books, research papers on the topic selected for the dissertation.	

Dissertation Stage - II					
TEACHING SCHEME: EXAMINATION SCHEME: CREDITS ALLOTTED:					
Practical: 08 Hours / Week	TW: 150 Marks	Total: 20 Credits			
	OR: 100 Marks				

To develop the analytical and practical skills in the students.

Course Outcomes: Upon useful completion of this lab students will be able to	
1	Manage time and other resources effectively whilst working on independent research.
2	Identify, analyses and interpret suitable data to enable the research problem to be solved.
3	Model, Simulate/ develop innovative hardware/ develop new algorithms/ emulate/ HIL/ develop prototype
	for the selected topic.
4	Describe the process of carrying out independent research in written format and report your results and
	conclusions with reference to existing literature and Analyze and synthesize research findings.
5	Use and develop written and oral presentation skills and prepare good technical project reports for
	publication in journals and conferences.
6	Take up challenging issues in industry and provide solutions.
The M. Tech. project is aimed at training the students to analyze independently any problem in the field of Electrical Engineering or interdisciplinary. The project may be analytical, computational, experimental or a combination of three. The project report is expected to show clarity of thoughts and expression, critical appreciation of the existing literature and analytical, experimental, computational aptitude. The student progress of the dissertation work will be evaluated in stage II (after semester IV) by the departmental evaluation committee and final viva voce will be conducted by the external examiner References:	
1	. Various books, research papers on the topic selected for the dissertation.