Bharati Vidyapeeth

(Deemed to be University)

Faculty of Engineering and Technology

Programme: M. Tech. (Chemical) (2023 Course)

Curriculum Structure

Bharati Vidyapeeth (Deemed to be University) Faculty of Engineering and Technology

Programme: M. Tech. Chemical Semester – I

CBCS 2023 Course

Sr.	Course	Name of Course	Teachi (Hou	ing Scl 1rs/we		Ex	amina	tion S	cheme	e (Ma	rks)		Cr	edits	
No.	Code		L	Р	Т	UE	IA	TW	OR	PR	Total	L	Р	Τ	Total
1		Advanced Separation processes	04	-	-	50	50	-	-		100	4	-	-	4
2		Thermodynamics of Phase Equilibria	04	-	-	50	50				100	4	-	-	4
3		Multiphase Reaction Engineering	04	-	-	50	50				100	4	-	-	4
4		Open Elective - I	04	-	-	50	50				100	4	-	-	4
5		Lab Practice - I	-	04	-	-	-	25		25	50	-	2	-	2
6		Lab Practice - II	-	04	-	-	-	25		25	50	-	2	-	2
Total			20	08	16	200	200	125	75	50	500	16	4	-	20

Semester II

Sr.	Course	Name of Course	Teach (Hou	ing So urs/w		Ex	amina	tion S	cheme	(Mar	ks)		Cred	lits	
No.	Code	Name of Course	L	Р	Т	UE	IA	TW	OR	PR	Tota l	L	Р	Т	Tota l
1		Modeling and simulation of chemical processes	04	-	-	50	50	-	-		100	4	-	-	4
2		Advanced transport processes	04	-	-	50	50				100	4	-	-	4
3		Process Intensification and	04	-	-	50	50				100	4	-	-	4

Total		20	08	16	200	200	12 5	75	50	500	16	4	-	20
6	Lab Practice - II	-	04	-	-	-	25		25	50	-	2	I	2
5	Lab Practice - I	-	04	-	-	-	25		25	50	-	2	I	2
4	Open Elective - II	04	-	-	50	50				100	4	-	-	4
	Development													

Semester III Total Duratio Total Marks :250 Total Credits: 20	on: 08hrs/week								
Subjects	Teaching (Hours.			Exa	amination Sc	heme (Ma	arks)		Credits
	L	Р	Т	IA	TW	PR	Oral	Total	
Seminar		02			50		50	100	05
Dissertation Stage - I		06			100		50	150	15
Total		08			150		100	250	20

List of Self Learning Courses, Department Electives and Open Elective

Department Elective - I	Department Elective - II
Advanced wastewater treatment	Artificial Intelligence
Synthesis and application of nano materials	Waste to Energy Conversion

Semester IV Total Duration: 08 Total Marks :250 Total Credits: 20	hrs/week								
Subjects	Teaching (Hours./			E	xamination S	cheme (N	larks)		Credits
	L	Р	Т	IA	TW	PR	Oral	Total	
Dissertation Stage - II		08			150		100	250	20
Total		08			150		100	250	20

Programme: M. Tech Chemical (2023)

Semester- I (Chemical)

		ADVA	NCED SEPARATION PRO	DCESSES		
		n: Professional Core				
Pre-r	equisi	ite Courses: Mass transfer	, Reaction engineering, Thern	nodynamics		
Teach	hing S	Scheme	Examination Scheme		Credits Al	lotted
Lectu	-	: 04Hours/Week	End Semester Examination	: 50 Marks	Theory	: 04
			Internal Assessment	: 50 Marks		
Total		: 04 Hours/Week	Total	: 100 Marks	Total Credi	ts : 04
Cour		tcomes: Student will be ab				
1			cal reaction in a given system.			
2		1 0	of multicomponent distillation			
3		*	ctors for design of membrane			
4			ng adsorption and ion exchan			
5	Ana	lyze novel separation techn	niques applicable to chemical	processes		
			Topics Covered			
UNIT	Г -I	Diffusion				(08 Hours)
		Steady State diffusion wi	th heterogeneous chemical rea	action, Steady s	tate	
			y homogeneous chemical reac			
			otropic media, unsteady state			
			e, semi-infinite and finite plan	ne media and in	spherical	
		and cylindrical media.				
UNIT	Г -II	Multicomponent Distillat				(08 Hours)
			int calculation; flash distillati			
			equation, underwood equation			
		minimum stages and m	inimum reflux calculation, 1	recentadvances	in column	

	design and operation-Petlyuk, divided wall, kaibel, pre-fractionators, post	
	fractionator. Azeotropic distillation, Extractive distillation, Molecular	
	distillation, Reactive distillation.	
UNIT-III	Membrane Processes	(08 Hours)
	Scope and significance of membrane processes; Types of membrane and preparation; Membrane characteristics; Transport processes involved in membrane separation processes such as ultrafiltration, nano-filtration, gas separation, reverse osmosis; Calculations of flux, separation factor, and design aspects of membrane processes such as ultrafiltration, nano-filtration, gas separation, reverse osmosis; Techo-economic aspects of membrane processes	(00 110013)
UNIT-IV	Adsorption and Ion Exchange	(08 Hours)
	Scope and significance of adsorption and ion exchange processes; Batch adsorption and ion exchange- Effect of temperature, pressure, and initial concentration, Isotherms, Estimation of thermodynamic parameters; Continuous adsorption and ion exchange- Effect of initial concentration and superficial velocity, Breakthrough curves and models, Design aspects of fluidized bed.	
UNIT-V	Novel Separation Techniques	(08 Hours)
	Extraction: Super critical fluid extraction, Reactive extraction, Microwave and	
	ultrasound assisted extraction; Ionic Separation; Separation based on surface	
	science;	
Internal A		
	up discussion on separation of multicomponent mixture (selecting any case study)	
	t Test subjective or MCQ	
	ution to any industry problem	
4. Des	ign of separation equipment for any one case study (Individual)	
	paration of a brief report on advanced separation processes applied in synthesis of an	y product.
Text Book	s/References	
1 King,	C. J., Separation Processes, Tata McGraw Hill Co., Ltd., 1982.	
2 Philli	p C. Wankat, Separation Process Engineering (2nd Edition), Printice Hall,2007	
	el Mulder, Introduction to Membrane Science and Technology, Marcel Dekker, 1992	2.
	phrey, J and G. Keller, Separation Process Technology, McGraw-Hill, 1997	

5	Anthony L Hines, Robert N Maddox, Mass Transfer Fundamentals and Applications.
6	Sherwood, T. K., Pigford, R. L. & Wilke, C. R, Mass Transfer Mc Graw Hill, 1975
7	Seader, J.D. and Henley, E.J., Separation Process Principles, Wiley, New York (1998)

THERMODYAMICS OF PHASE EQUILIBRIA

Designation: Professional Core.

Course Pre-requisites: Process calculations, Basic concepts of residual and excess properties

				-		
TEA	CHIN	<u>G SCHEME:</u>	EXAMINATION SCHEM	E:	CREDITS A	LLOTTED:
Lectu	res	: 4 Hours/Week	End Semester Examination	: 50 Marks	Theory	: 04
Total		: 4Hours/Week	Internal Assessment	: 50 Marks	Total Credits	: 04
			Total	:100 Marks		
					·	
Cours	se Out	comes				
After	compl	etion of the course the stud	dent will be able to:			
1.	Deter	mine residual and excess	properties to quantify deviation	n from an idea	lity	
2.	Appl	y modified Raoults law for	r VLE and estimate activity co	efficient using	g various mode	s.
3	Appl	y concept of fugacity for s	olid fluid equilibria			
4.	Appl	y thermodynamic principle	es to interfacial phase equilibri	ia		
5	Deter	mine Gibbs free energy fo	or homogeneous and heterogen	eous reactions	5.	
6.	Appl	y thermodynamic principle	es to perform energy analysis	of the system.		
			Topics covered			
UNIT	Г-І	Thermodynamics of Mu	ulti-component mixtures:			(08 Hours)
		Ideal mixtures and exce	ss mixture properties, Fugaci	ity of species	in gaseous,	
		liquid and solid mixture	es, Criteria for phase equilib	rium in multi	i-component	
		systems, Modified Roul	t's law and its significance,	Gibbs Duhe	m equation,	
		Hydrogen bonding and c	harge transfer complexing Equ	uilibrium		
UNIT	Г -II	Vapor liquid Equilibriu	ım of mixtures			(08 Hours)
		Vapor Liquid equilibriu	m (VLE) of ideal mixtures, L	ow pressure V	/LE in non-	

	ideal mixtures, High pressure VLE using equation of states, Solubility of gas in	
	liquid, Liquid-Liquid Equilibrium, Vapor Liquid-Liquid Equilibrium, Models	
	for activity coefficient, UNIFAC method, UNIQUAC equation, Osmotic	
	pressure, osmotic equilibrium	
UNIT-II	I Mixture phase equilibrium involving solids	(08 Hours)
	Solubility of solid in liquid and supercritical fluid, Solid Liquid Equilibrium,	
	Partitioning of solid between two liquid phases, distribution coefficient, Freezing	
	point depression of solvent due to presence of solute, freezing point of liquid	
	mixtures in presence of solid.	
UNIT-IV	V Surfaces, Interfaces and Adsorption	(08 Hours)
	Thermodynamics of interfaces, Gibbs surface model and surface tension,	
	Surface energy of solids, Surface effects on heterogeneous phase equilibrium,	
	effect of particle size on vapor pressure, effect of bubble size on the boiling	
	temperature of pure substances, solubility and nucleation, effect of particle size	
	on melting temperature, Gibbs adsorption equation, Gibbs-Donnan equilibrium.	
UNIT-V	Chemical Reaction Equilibria, Energy analysis	(08 Hours)
	Chemical equilibrium in single phase system, Heterogeneous chemical reactions,	
	Chemical equilibrium when several reaction occurs in single phase, Combined	
	chemical and phase equilibrium. Phase rule and Duhem's theorem for reacting	
	systems, Degree of freedom analysis for non-reacting and reacting systems.	
	Defining Exergy, Control Volume Energy Rate Balance, Exergetic Efficiency,	
	Introduction to Energy Costing.	
Internal	Assessment: Each student will submit assignments based on different topics in con	nsultation with
	n the area of thermodynamics of phase Equilibria, keeping track of the recent techn	
•	opments. Internal assessment will be carried out for each unit using one or combinatio	-
	for guidance faculty can design and provide relevant means of assessment in addition t	
	Init Test can be conducted based on each unit, it may be subjective/objective.	
	olving numerical in connection with phase equilibria	
	urprise and/or open book test	
5. 5		

5. In 6. E en 7. S	Presentation/report based on recent advances in a given domain (Individual student and/or group) ndustrial relevance case studies of the subject. Enhancement in collaborative learning is done through, group assignments that will be given to encourage students to work with classmates to discuss and complete homework assignments.
6. E ei 7. S	Enhancement in collaborative learning is done through, group assignments that will be given to encourage students to work with classmates to discuss and complete homework assignments.
en 7. S	encourage students to work with classmates to discuss and complete homework assignments.
7. S	
8 P	Solution to industry oriented problem
0. 1	Preparation of a brief report on applicability of liquid-liquid equilibrium (LLE) in chemical
e	engineering systems.
Text Boo	oks/References:
1. J	J. M. Smith and H. C. Van Ness, "Introduction to Chemical Engineering Thermodynamics", McGraw-
F	Hill Publication
2. S	Stanley I. Sandler, "Chemical, Biochemical and Engineering Thermodynamics", McGraw- Hill
P	Publication
3. S	Savein Stolen, Tor Grande, Neil Allan, "Chemical Thermodynamics of Materials", John Whilly and
S	Sons.
4. K	K.V. Narayanan," Chemical Engineering Thermodynamics", PHI Learning Pvt. Ltd.
5. k	Kenneth Denbigh, "Principles of Chemical Equilibrium" 4 th Edition, Cambridge University Press
б. Ү	Y. V. C. Rao, "Chemical Engineering thermodynamics", Oxford University Press
7. E	B. F. Dodge, "Chemical Engineering Thermodynamics", McGraw- Hill Publication
8. Т	T. E. Daubert, "Chemical Engineering Thermodynamics", McGraw-Hill Publication
9. (Glasstone S., "Thermodynamics for Chemists", Affiliated East-West Press
10. E	B. G. Kyle, "Chemical and Process Thermodynamics" 3 rd Edition, PHI Learning Pvt. Ltd

	MUL	TIPHASE REACTION ENGI	NEERING		
Designat	ion: Professional Core				
	isite Courses: Material and Homogeneous reaction eng	d energy balance calculations, F ineering	Fluid mechanics	, Heat transfe	r, Mass
Teaching	Scheme	Examination Scheme		Credits All	otted
Lectures	: 04 Hours/Week	End Semester Examination	: 50 Marks	Theory	: 04
Practical	: - Hours/Week	Internal Assessment	: 50 Marks	Practical	: -
Tutorial	:-	Term work/Practical	: -	Tutorial	: -
Total	: 04 Hours/Week	Total	: 100 Marks	Total Credit	s : 04
1 E: 2 E: 3 E: 4 E: 5 E:	stimate multiphase reaction stimate flow structure and j stimate flow non-ideality ir	sition of multiphase reaction. In rate controlling step and deterr phase hold-up of a given multip In a given multiphase reactor. Infer coefficient in a given multip multiphase system.	hase reactor.	e of reaction.	
		Topics Covered			
UNIT-I	Examples of inde Thermodynami Criteria of chem change and equ Effect of temper	of heterogeneous reaction; ustrial importance cs of Multiphase Reactions nical reaction equilibrium; Sta nilibrium constant; Estimation cature and pressure on equilibr	andard Gibbs f of equilibriun ium constant; H	n constant;	(08 Hours)

UNIT-II	Kinetics of Multiphase Reactions	(08 Hours)	
	Mechanisms of heterogeneous reactions; Determination of rate controlling		
	step; Estimation of overall rate of reaction; Factors affecting the rate of		
	reaction; Heterogeneous catalysis: selection of catalyst, external and internal diffusion effects, catalyst deactivation.		
UNIT-III	Hydrodynamics and Mixing	(08 Hours)	
	Hydrodynamic characteristics of different multiphase reactors:	(00 110015)	
	Mechanically Agitated Contactors (MAC), Bubble Columns, Slurry		
	Reactors, Fluidized Beds, Loop Reactors and Modified Versions.		
	Experimental methods to measure phase mixing; Effect of geometrical,		
	system, and operating parameters on phase mixing in multiphase reactors;		
	Quantification of phase mixing; Development of a mathematical model		
UNIT-IV	Heat and mass transfer	(08 Hours)	
	Experimental methods to measure heat transfer coefficient; Effect of		
	geometrical, system, and operating parameters on heat transfer coefficient		
	in multiphase reactors; Quantification of heat transfer coefficient;		
	Application of correlations available to different multiphase reactors.		
	Experimental techniques used for estimation of mass transfer coefficient		
	and selection of suitable technique for a multiphase reactor; Effect of		
	geometrical, system, and operating parameters on mass transfer coefficient		
	in multiphase reactors; Quantification of mass transfer coefficient;		
	Application of correlations available to different multiphase reactors.		
UNIT-V	Design and scale up of multiphase reactors	(08 Hours)	
	Generalized methodology of design and scale up of multiphase reactors;		
	Examples of industrial importance.		
Internal Assess	ment: Internal assessment will be carried out for each unit using one or co	mbination of	
following:			
	ubjective and/or MCQ		
2 Surprise an	2 Surprise and/or open book test		
	·······		

3	Presentation/report based on recent advances in a given domain (Individual student and/or group)
4	Solution to industry oriented problem
5	Design of experiment to estimate design parameters pertaining to any one multiphase system
Text	t Books/References
1	V. G. Pangarkar, "Design of multiphase reactors", 1st Edition, Wiley, 2015
2	L. K. Doraiswamy and M. M. Sharma, "Heterogeneous Reactions", 2 nd Edition, Volume I and II.
3	G. B. Tatterson, "Fluid Mixing and Gas Dispersion in Stirred Reactors", 10 th Edition, Academic Press,
	London, 1994
4	W. D. Deckwer, "Bubble Column Reactors", Cambridge University Press, New York, 2000.
5	Diazo Kunji and O. Levenspiel, "Fluidization Engineering", 2 nd Edition, Butterworth Heinemann, 1991
6	J. F. Devidson and Harrison, "Fluidization", 10 th Edition, Academic Press, London, 1994.
7	J. M. Smith, H. C. Van Ness and M. M. Abbott, "Introduction to Chemical Engineering
	Thermodynamics", 5 th Edition, McGraw Hill International, Singapore, 1996.

ELECTIVE -I: ADVANCED WASTE WATER TREATMENT

Designation: Open Elective-I

Pre-requisite Courses: Mechanical operations, Engineering chemistry.

Teaching Scheme		Examination Scheme		Credits Allotted	
Lectures	: 04Hours/Week	End Semester Examination	: 50 Marks	Theory	: 04
Practical	: -Hours/Week	Internal Assessment	: 50 Marks	Practical	:-
Tutorial	: -	Term work/Practical	: -	Tutorial	: -
Total	: 04 Hours/Week	Total	: 100 Marks	Total Credits	: 04

Course Outcomes

1 Ex	plain the conventional	waste water t	treatment methods.
------	------------------------	---------------	--------------------

- 2 Identify various membrane based advanced waste water treatment methods.
- 3 Demonstrate basics of advanced oxidation processes (AOPs).
- 4 Analyze various emerging AOPs and their mechanism.
- 5 Identify the various wastewater treatment methods used in chemical and allied industries

Topics Covered

UNIT-I	Conventional waste water treatment methods:	(08 Hours)
	Physical methods: Mixing; Flocculation; Gravity separation, Grit removal,	
	Sedimentation; Adsorption; Floatation. Chemical methods: Coagulation;	
	Precipitation; Chemical oxidation. Biological methods: Aerobic oxidation;	
	Anaerobic oxidation; Anaerobic fermentation and oxidation; Aerobic	
	biodegradation; Activated sludge process; Trickling filters. Limitations of	
	conventional methods.	
UNIT-II	Membrane based advanced wastewater treatment:	(08 Hours)
	Membrane separation techniques: Brief introduction of microfiltration,	

		ultrafiltration, nanofiltration, membrane materials; Dialysis: membranes details, characteristics, industrial application; Electrodialysis: membranes details, characteristics, industrial application; Membrane bioreactors: membranes details, characteristics, industrial applications;Membrane modules: plate and frame module, spiral wound module, tubular module, capillary module, hollow fiber module, comparison between module configuration, industrial applications.		
UNI	T-III	Advanced oxidation processes (AOPs):	(08 Hours)	
		Fundamentals and background of AOPs for water and wastewater treatment; basic reaction mechanism of AOPs; Role of hydroxyl radicals and their		
		generation; Reaction kinetics and degradation mechanisms of organic pollutants		
		by hydroxyl radicals; Effects of process parameters and scavenging media on		
		degradation efficiency; oxidation potential of AOPs; merits and demerits of various AOPs.		
UNI	T-IV	Emerging AOPs:	(08 Hours)	
		Electrochemical oxidation; Ultrasound processes; Principles of sonochemistry	(00 110015)	
		and acoustic cavitation;Ultrasound cavitation and its combination with other		
		AOPs;Synergistic and antagonistic effects;Hydrodynamic cavitation and its		
UNI	T_V	combination with other AOPs. Case study on wastewater treatment in various chemical and allied	(08 Hours)	
UNI	1-1	industries:	(00 110013)	
		Sources; Characteristics; Methodology and processes for the treatment of		
		industrial wastes of sugar industry, beverage industry, tannery industry, textile		
		industry, paper and pulp mill, fertilizer industry, dye industry, oil refinery etc.; Rules and regulations for disposal of wastewater; Water reclamation and reuse.		
Inter	mal A	ssessment: Internal assessmentwill be carried out for each unit using one or co	mbination of	
follo	wing:			
1	1 Unit test: Subjective and/or MCQ			
2	Surprise and/or open book test			
3	Preser	esentation/report based on recent advances in a given domain (Individual student and/or group)		
4	Preser	ntation/report related tocase study on wastewater treatment in various chemic	al and allied	

	industries.
5	Group discussion on the topic related to various advanced wastewater treatments.
Text	Books/References
1	Metcalf & Eddy, "Waste Water Engineering Treatment & Reuse", Tata Mc Graw-Hill, Fourth Edition,
	2003.
2	Simon Parsons, Advanced oxidation processes for water and wastewater treatment, IWA Publishing,
	2004.
3	C.S.Rao, "Environmental Pollution Control Engineering", Wiley Eastern Ltd, New age international,
	second print 1994.
4	Jean-Pierre Franc, Jean-Marie Michel, "Fundamentals of Cavitation", Kluwer Academic Publishers,
	Dordrecht.
5.	Richard W. Baker, "Membrane technology and applications", John Wiley and Sons, Ltd.

ELECTIVE-I: NANOMATERIALS SYNTHESIS AND APPLICATIONS

Designation: Elective

Pre-requisite Courses: Basic chemistry, Physical chemistry, Mass transfer, Fluid flow operations, Chemical Engineering Thermodynamics

Teaching Scheme		Examination Scheme		Credits Allotted	
Lectures	: 4 Hours/Week	End Semester Examination	: 50 Marks	Theory : 04	
Practical	: 2 Hour /Week	Internal Assessment :	50 Marks	TW/Practical :	
		Term-work (TW)	:	Tutorial :	
		Total	· 100Marks	Total credits · 04	

Course Outcomes:

After completion of the course students would be able to:

- 1 Define the importance of nanotechnology and their property optimization
- 2 Design the methodology for synthesis of nanomaterials
- 3 Determine suitable process for analysis of nanomaterials and evaluate their properties
- 4 Define the applications of nanomaterials and their property requirements for desired applications
- 5 Explain environmental issues and risks involved during nanomaterial applications and design safe pathway

Topics covered

UNIT-I	Introduction toNano-Materials	(08 Hours)
	Importance of Nanotechnology, opportunity at the nano scale, length and time	
	scale in structures, energy landscapes, interdynamic aspects of inter molecular	
	forces, classification based on the dimensionality, nanoparticles, nanoclusters,	
	nanotubes, nanowires and nanodots, semiconductor nanocrystals carbon	

	nanotubes, influence of nano structuring on mechanical, optical, electronic, magnetic and chemical properties	
UNIT-II	Nanomaterials synthesis Synthesis and processing, method of nano structuredmaterial preparation – mechanical grinding, wet chemical synthesis, sol-gel processing, gasphase synthesis, gas condensation processing, chemical vapor condensation, nano compositesynthesis – processing Biological methods of synthesis: Use of bacteria, fungi, Actinomycetes for nanoparticlesynthesis, Magnetotactic bacteria for natural synthesis of magnetic nanoparticles; S-layerproteins, Viruses as components for the formation of nanostructured materials; Synthesis processand application, Role of plants in nanoparticle synthesis	(08 Hours)
UNIT-III	Analysis of nanomaterial properties X-ray Diffraction, Thermal Analysis Methods, Differential Thermal Analysis and Differential scanning calorimetry, Spectroscopic techniques, UV-Visible Spectroscopy, IR Spectroscopy, Microwave Spectroscopy, Raman Spectroscopy, Electron Spin Resonance Spectroscopy, NMR Spectroscopy- Particle size characterization: Zeta Potential Measurement, Particle size Analysis, X-ray Photoelectron spectroscopy, Optical microscopy, Scanning Electron Microscopy, Scanning Tunneling Microscopy	(08 Hours)
UNIT-IV	Applications of nanonaterials Industrial applications of nanomaterials, in the areas of electronics, photonics, biology, healthand environment, medicine, defence, chemicals, catalysts, textiles, etc. Application of nanotechnology in remediation of pollution, photocatalysis and other nanocatalysts, greenhousegases, global warming.	(08 Hours)
UNIT-V	Environmental aspects and risk analysis of nanomaterials Identification of Nano-specific risks, responding to the challenge, human health hazard, risk reduction, standards, safety, transportation of nanoparticles, emergency responders. Riskassessment, environmental impact, predicting hazard, environmental and	(08 Hours)

	policy making, ecotoxicitymeasurement of nanomaterials, vacuum packaging
	under inert gas atmosphere, methodology for stabilization, human safety in
	nanomaterial processing area.
Torrt	Deeles/Defenences
	Books/References:
1	P.P. Simeonova, N. Opopol and M.I. Luster, Nanotechnology - Toxicological Issues and Environmental Safety, Springer USA 2006.
2	Mick Wilson, KamaliKannangara, Geoff Smith, Michelle Simmons, BurkarRaguse,Nanotechnology:Basic sciences and emerging technologies, Overseas Press, 2005
3	Charles P. Poole, Frank J. Owens, Introduction to Nanotechnology ^{II} , Wiley Interscience, USA 2003.
4	Mark A. Ratner, Daniel Ratner, Nanotechnology: A gentle introduction to the next Big Ideal, 1 st Ed. Prentice Hall P7R:USA, 2002
5	G. Cao and Y.Wang, Nanostructures and Nanomaterials: synthesis, properties and applications, 2 nd Ed., World Scientific, Singapore, 2011
6	H. S. Nalwa, Encyclopedia of nanoscience and nanotechnology, American ScientificPublishers, USA 2007
7	Willard, H. H, Merritt Jr., L. L, Dean, J. A., Settle Jr., F. A, Instrumental methods of analysis, Van NostrandNew York, N.Y. USA, 2014
	rnal Assesment: Below is the list of possible topics, which is for guidance faculty can design and ide relevant topics in addition to these
1	Prepare a report on detail of Nano material, preparation, characterization, module and process design for anyone application
2	Technical interview based on knowledge of Nano technology.
3	Students have to study any five NPTEL/you-tube videos related to Nano technology and prepare/present power point presentation.
4	Group discussions on Nano science and technology related topics.
5	Prepare a report on innovations in Nano technology and their practical importance.
6	Students have to study any five research papers related to specific topic and prepare/present power
	point presentation

	industry.					
8	Case study on emerging trends in process/product innovation considering nano-technology.					
9	Students have to visit che	emical industry and make a detailed report on nano-technologies used in				
	the process.					
10	Write a report on your repute.	visit to research and development laboratory of national/international				
11	1	chnologies for addressing the problems of Water and Energy.				
Sylla	Syllabus for Unit Test:					
Unit	Test : I	Units : I, II, and III				
Unit	Test : II	UNIT : IV, V, and VI				

SEMESTER-II

MODELLING AND SIMULATION OFCHEMICAL PROCESSES

Designation: Professional Core

Pre-requisite Courses: Material and energy balance calculations, Fluid mechanics, Heat transfer, Mass transfer, reaction engineering, Process Control, Thermodynamics

Teaching Scheme		Examination Scheme		Credits Allotted	
Lectures	: 04Hours/Week	End Semester Examination	: 50 Marks	Theory : 04	
		Internal Assessment	: 50 Marks		
Total	: 04 Hours/Week	Total	: 100 Marks	Total Credits : 04	

Course Outcomes

1 Estimate mass balance, energy balance and momentum balance equation for various chemical process systems.

- 2 Develop models for heat transfer, mass transfer and reaction engineering equipment.
- 3 Estimate modelstructure, estimate parameters and recognize the simulation method applicable.
- 4 Estimate the design of system and apply appropriate optimization method.
- 5 Apply novel modeling approach to chemical systems.

Topics Covered

UNIT-I	Basics of phenomenological modelling	(08 Hours)
	Introduction to modeling: systematic approach to model building, fundamentals	
	of mathematical modeling, principles of formulations. Classification ofmodels:	
	simple vs. rigorous, lumped parameter vs. distributed parameter, Steady state vs.	
	dynamic, concept of degree of freedom for steady state and unsteady state	
	systems.Fundamental laws: continuity equations, energy equation, equation of	
	motion, transport equations, equation of state, equilibrium, chemical kinetics.	
UNIT-II	Mathematical models of heat-transfer equipment's: heated tanks, heat	(08 Hours)
	exchangers, vaporizer, and jacketed vessels. Mathematical models of mass-	
	transfer equipment's:batch and continuous distillation columns, flash drum,	
	reactive distillation columns, packed absorption columns. Mathematical models of	
	reactors: batch reactors, semi-batch reactor, continuousstirred tank reactor, plug-	
	flow reactors, reactor with axial dispersion etc.	
UNIT-III	Empirical model building , analysis and Simulation	(08 Hours)
	Empirical model building procedure: Methods-reaction curve and statistical	
	method, Model structure and form, parameter estimation, verification. ill-	
	conditioned systems, lumped and distributed parameter models and their solution	
	strategies, development of grey box models.	
	Fundamentals of simulations: Ab-initio methods, basis sets, Hartree-Fock	
	theory,	
	density functional theory, geometry optimization, vibrational analysis;	
	elementary, classical statistical mechanics, elementary concepts of temperature,	
	ensembles and fluctuations, partition function, ensemble averaging.	
UNIT-IV	Optimization and design of systems	(08 Hours)
	Deterministic approach; stochastic approach; Single variable optimization;	
	Multivariable optimization; gradient based techniques; Unconstraint One	
	Dimension Methods: Newton's Method, Quadratic Interpolation, Cubic	
	Interpolation; Unconstraint Multiple Variable: Random search, Grid search,	
	Simplex search, QuasiNewton method	
UNIT-V	Novel modeling approach	(08 Hours)
	Error analysis: Terminologies related to error analysis, Formulation errors and	
	data uncertainty, tests of significance, analysis of variance; Artificial Neural	
	Networks (ANNs):Biological background, ANN classification, Computational	

properties of ANNs, Modeling a single neuron; Building blocks of feed-forward
neural network: Bias, processing elements, input layer, hidden layer, output
layer, learning rate, momentum, transfer function, error back propagation.
Internal Assessment
1. Write a mathematical model for unit operation and processes involved in any specific chemical
industry.
2. Collect experimental data from literature and estimate unknown parameters for chemical
reactors/heat exchanger/distillation unit.
3. Unit Test subjective or MCQ
4. Solving numerical based on modelling, simulation and optimisation concept.
5. Group discussion on any industrial problem
Text Books/References
1 W. L. Luyben, "Process Modeling Simulation and Control for Chemical Engineers", McGraw Hill,
1990.
2 R. E. G. Franks, "Modeling and Simulation in Chemical Engineering", WielyIntrscience, NY, 1972.
3 B.V. Babu, "Process Plant Simulation", Oxford University Press, NY 2004.
4 D. Himmelblau, K.B. Bischoff, "Process Analysis and Simulation", John Wiley & Sons, 1968
5 M.E.Davis, Modeling and Numerical Methods in Chemical Engineering, John Wiley & Sons, 1984.
6 S. S. Tambe, B. D. Kulkarni, P. B. Deshpande, Elements of Artificial Neural Networks with Selected
Applications in Chemical Engineering, and Chemical & Biological Sciences, 1st Ed., Louisville:
Simulations& Advanced Controls Inc., KY 1996.

		ADV	ANCED TRANSPORT PRO	OCESSES		
Desig	natior	n: Professional Core				
Pre-re	equisi	te Courses: Fluid mecha	nics, Heat transfer, Mass transf	fer		
Teach	ning S	cheme	Examination Scheme		Credits Al	lotted
Lectur		: 04Hours/Week	End Semester Examination	: 50 Marks	Theory	: 04
Practio	cal	: -Hours/Week	Internal Assessment	: 50 Marks	Practical	: -
Tutori	ial	:-	Term work/Practical	: -	Tutorial	: -
Total		: 04 Hours/Week	Total	: 100 Marks	Total Credi	ts : 04
Cours 1 2	Deve flow	· · · · · · · · · · · · · · · · · · ·	alancesand velocity distribution			
Z		teady-state problems.	or multi now, interpliase transp		copic momen	tum barances
3		1 01	s and temperature distribution e			inar flow.
4			icient for interphase transport i			
5	Dev	elopshell mass balances a	nd concentration distribution e	equations in soli	ds and in lam	inar flow.
			Topics Covered			
UNIT						(08 Hours)

	properties of gases and liquids; effect of pressure and temperature.	
	One dimensional momentum transport in laminar flow (shell balance):	
	General method of shell balance approach to momentum transfer problems;	
	momentum flux and velocity distribution for flow of Newtonian and non-	
	Newtonian fluids in pipes, planes, slits and annulus; Fluid flow of two	
	immiscible fluids.	
UNIT-II	Differential equations of fluid flow:	(08 Hours)
	Control volume approach; Differential continuity equation; Navier-Stokes	
	Equation and Bernoulli's equation; Applications of differential equations of fluid	
	flow	
	Interphase transport in isothermal system:	
	Friction factors for fully developed laminar, turbulent and transition flow in	
	circular conduits; Friction factors for packed columns.	
	Macroscopic momentum balances:	
	The macroscopic mass, momentum and mechanical energy balances; Use of	
	macroscopic balances for steady-state problems.	
UNIT-III	Mechanism of energy transport:	(08 Hours)
	Fourier's law of heat conduction; Thermal conductivity of liquids and solids;	
	Effective thermal conductivity of composite solids.	
	Shell energy balances and temperature distribution in solids and in laminar	
	flow:	
	Heat conduction through composite walls; Heat conduction in a cooling Fin;	
	Forced convection; Free convection.	
UNIT-IV	The equation of change for non-isothermal systems:	(08 Hours)
	Theequation of energy; The equation of motion for forced and	
	freeconvection;Use of equations of change to solve the steady-state problems	
	Unsteady heat conduction in solids:	
	Heating of a semi-infinite slab; Heating of a finite slab; Unsteady heat	
	conduction near thewall with sinusoidal heat flux	
	Interphase transport in non-isothermal systems:	
	Heat transfer coefficients for forced convection in tubes and throughpacked	
	beds; Heat transfer coefficients for free and mixed convection; Heat transfer	
	coefficients for condensation of pure vapors on solid surfaces.	

UNI	 T-V Introduction of diffusivity and mechanism of mass transport: Definitions of concentrations. Velocities and mass fluxes. Fick's law of diffusion. Temperature and pressure dependence of mass diffusivity. Concentration distribution in solids and in laminar flow: Shell mass balances and boundary conditions. Diffusion through stagnant gas film. Diffusion with heterogeneous chemical reaction. Diffusion with 	(08 Hours)				
	homogeneous chemical reaction.Diffusion in falling liquid film. Diffusion and					
	chemical reactions inside a porous catalyst.					
	Analogies of momentum, heat and mass transfer.					
	rnal Assessment: Internal assessmentwill be carried out for each unit using one or co- wing:	ombination of				
1	Unit test: Subjective and/or MCQ					
2	Surprise and/or open book test	arprise and/or open book test				
3	Presentation/report based on recent advances in a given domain (Individual student and/or	r group)				
4	Assignment related tosolving numerical based on momentum, heat and mass transport.					
5	Group discussion on the topic related to various transport processes.					
Text	t Books/References					
1	W. E. Stewart, E. N. Lightfoot, R. B. Bird, "Transport Phenomena", John Wiley & Sons					
2	J. R. Welty, C. W. Wicks, R. E. Wilson, G. Rorrer, "Fundamentals of momentum, h	eat and mass				
	transfer", Wiley INDIA					
3	J.C. Slattery, "Advanced transport phenomena", Cambridge University Press					
4	J. G. Knudsen, D. L. Kaz, "Fluid Dynamics and Heat Transfer", McGraw Hill					

PROCESS INTENSIFICATION AND DEVELOPMENT

Designation: Professional Core

Pre-requisite Courses: Material and energy balance calculations, Fluid mechanics, Heat transfer, Mass transfer, Homogeneous reaction engineering

Teaching Scheme			Examination Scheme		Credits All	otted
Lectures : 04Hours/Wee		4Hours/Week	End Semester Examination	: 50 Marks	Theory	: 04
Practi	cal : -H	Hours/Week	Internal Assessment	: 50 Marks	Practical	: -
Tutori	ial : -		Term work/Practical	: -	Tutorial	: -
Total	: 04	4 Hours/Week	Total	: 100 Marks	Total Credit	s :04
Cours	se Outcome	S				
1	Estimate n	eed and methodolo	gy for process intensification.			
2	Define the reactor for process and its optimized output					
3	Design and	l separation and rec	ycle flow patterns for enhance	d output.		
4	Analyze ch	nemical storage and	handling related hazards and o	define and contr	ol system for	handling.
5	Analyze th	e risk and define sa	fe handling process, while mir	nimizing risk.		
6	Design and	l scale up a given p	rocess system.			
			Topics Covered			
UNIT-I Introduction to S Significance of SE			DCP DCP in chemical process indus	try, Hierarchy o	of chemical	(08 Hours)

	processdesign: Hierarchy, approach to process design, performance.	
	Preliminary ProcessSynthesis, Synthesis of reaction: Function of process	
	recycle, vapor cycles andpurges, vapor verses liquid cycles, batch	
	processes, process yield, Introduction to scale-up methods, pilot plants,	
	models and principles of similarity. Industrial applications.	
UNIT-II	Chemical transformation and reactors	(08 Hours)
	Choice of reactor: Reaction path, types of reaction systems, reactor	
	Continuous orBatch Processing, Chemical state, Process Operations,	
	Synthesis Steps, Synthesis Tree, Heuristics, Algorithmic Methods	
UNIT-III	Process intensification, separation and recycle	(08 Hours)
	Recycle structure, Recycle material balances, Reactor heat effects,	
	Equilibrium limitations, Reactor design, Separation system, vapor	
	recovery system, Liquid separation system, Distillation column	
	sequencing, azeotropic systems, Residue Curves for Heterogeneous	
UNIT-IV	Systems.	(00 II
UNIT-IV	Industrial and Occupational Hazards: Chemical hazards classification, Storage and handling of chemicals,	(08 Hours)
	Radiation hazards and control of exposure to radiation, Fire hazards,	
	-	
	Types of fire and prevention methods, layout of storage, Mechanical	
	hazards, Electrical hazards, Construction hazards, Occupational diseases	
	and prevention methods, Instrumentation and control for safe operation,	
	Pressure, Temperature and Level controllers, Personal protective	
	equipments, Industrial lighting and ventilation, Industrial noise	
UNIT-V	Safety and Risk Management	(08 Hours)
	Risk analysis techniques, hazard and operability (HAZOP) studies, hazard	
	analysis (HAZAN), fault-tree analysis, consequence analysis, onsite and	
	offsite emergency management plans, human and accident error analysis, economics of risk management; Economics of safety. Financial costs to	
	individual, family, organization and society, Budgeting for safety. Safety	
	audit – objective and procedure, audit and safety reports, Specific case	
	studies, Factory Act. ESI Act, Environmental Act. Workmen -	
		I

	compensation Act, Provisions under various acts,
Inter	rnal Assessment: Internal assessmentwill be carried out for each unit using one or combination of
follo	wing:
1	Unit test: Subjective and/or MCQ
2	Surprise and/or open book test
3	Presentation/report based on recent advances in a given domain (Individual student and/or group)
4	Solution to industry oriented problem
5	Design of experiment to estimate design parameters pertaining to any one process
Text	Books/References
1	Robin Smith, "Chemical Process Design and Integration", 2 nd Edition, McGraw Hill, 2016
2	Gael D. Ulrich "A Guide to Chemical Engineering Process Design and Economics", John Wiley and
	Sons, 1984
3	Gavin Towler, Ray Sinnott, "Chemical EngineeringDesignPrinciples, Practice and Economicsof Plant and Process Design" 2 nd Edition, Elsevier, 2013
4	Richard Turton, Joseph A. Shaeiwitz, Debangsu Bhattacharyya, "Analysis, Synthesis, and Design of Chemical Processes" 5 th Edition, Prentice Hall, 2018.
5	Center for Chemical Process Safety, "Guidelines forImplementing Process SafetyManagement
	Systems", American Institute of Chemical Engineers, New York, 1994
6	Center for Chemical Process Safety of the American Institute of Chemical Engineers, "Safe Design and
	Operation of Process Vents and EmissionControl Systems", Wiley Interscience, 2006
7	Warren D. Seider, Daniel R. Lewin, J. D. Seader, SoemantriWidagdo, Rafiqul Gani, Ka Ming Ng,
	"Product and Process Design Principles", 4th Edition, Wiley, 2017.

	ELECTIV	E-II : ARTIFICIAL INTEL	LIGENCE		
Designation	a: Professional Elective				
Pre-requisi	te Courses: Basic knowle	edge of Engineering Mathema	tics, Computer	Programming	
Teaching So	cheme	Examination Scheme		Credits Allo	tted
Lectures	: 04 Hours/Week	End Semester Examination	: 50 Marks	Theory	: 04
Total	: 04 Hours/Week	Internal Assessment	: 50 Marks	Total Credits	: 04
		Total	: 100 Marks		
Course Out	comes				
After comple	etion of the course studen	ts would be able to			
1 Estimate	principle components for	r a given system/process data.			
2 Estimate	artificial neural network	modeling parameters for chen	nical process.		
3 Estimate	genetic programming mo	odeling parameters for chemic	al process.		
4 Formula	te problem statement of c	hemical engineering process u	sing artificial i	ntelligence.	
		igence based optimization pro			
1				1	
		Topics Covered			
UNIT-I	UNIT-I Introduction		(0	8 Hours)	
	Introduction to Artificia	al Intelligence (AI); Applicat	ions of AI to	Chemical	
		ion to various AI- based			
	• •	use and effect relationships. B		-	

UNI	T-II	Artificial Neural Networks (ANNs)	(08 Hours)
		Biological background; ANN classification; Computational properties of	
		ANNs; Modelling a single neuron; Building blocks of feed-forward neural	
		network: Bias, Processing elements, Input layer, hidden layer, Output layer, Learning rate, Momentum, Transfer function; Error back propagation.	
UNI	T-III	Genetic Programming (GP)	(08 Hours)
		Introduction to evolutionary algorithms; Dependent variables; Independent variables; Mathematical operators; Initial population; Candidate solution;	
		Tree structure; Initialization; Fitness evaluation and selection; Crossover; Mutation.	
UNI	T-IV	Evolutionary Algorithms (EA)	(08 Hours)
		Introduction to stochastic evolutionary algorithms; Applications; Genetic	
		algorithms; Particle Swarm method; Ant Colony method.	
UNI	T-V	Applications and Case Studies	(08 Hours)
		Chemical Engineering based different case studies solution using AI-based	
		modelling and optimization formalisms	
	0	s/Technical reports/Seminar/Case studies	
1.	-	discussions on any of the following topics:	
	,	Role of Artificial Intelligence in Chemical Engineering	
	,	Phenomenological, empirical and AI-based modelling	
-		Artificial Intelligence and Chemical Industries	
2.	Make a	a complete chart of various AI based modeling formalisms with suitable schemat	1CS.
3.	Prepara	ation of seminar report and oral presentation based on recent advances	in Chemical
	Engine	ering with Artificial Intelligence.	
4.	Studen	ts have to study any five NPTEL videos related to Artificial Intelligence and pre-	epare/present
	power	point presentation.	
5.	Solvin	g numerical based on core chemical engineering process problems using AI form	alisms.
6.	Collect	t and read recent research papers on Artificial Neural Network and chem	ical process

7.					
	Collect and read recent research papers on Genetic Programming and chemical process modelling				
	and prepare summery report.				
8.	Analyse the results for case study with Principal Component Analysis and interpret the results.				
9.	Prepare question bank with appropriate answers based on the whole subject renewable energy.				
10.	Enhancement in collaborative learning is done through, group assignments that will be given to				
	encourage students to work with classmates to discuss and complete homework assignments.				
*Stuc	dents in a group of 3 to 4 shall complete any one project/assignments from the above list.				
Inter	rnal Assessment				
	internal assessment shall consist of case study solved using AI-based formalisms mentioned in the				
•	bus OR shall be based on the technical report/seminar based AI-based studies carried out by				
indiv	vidual or small group of students.				
Tort	Books/References				
1 1	C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, Oxford, 1995.				
2	S.S. Tambe, P.B. Deshpande, B.D. Kulkarni, Elements of Artificial Neural Networks with Selected				
	Applications in Chemical Engineering, and Chemical & Biological Sciences, Simulation &				
	Advanced Controls, Inc., Louisville, 1996.				
3	J. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection,				
	MIT Press, Cambridge, M.A, 1992.				
4	V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.				
5	K. Deb, Optimization for Engineering Design: Algorithms and Examples, Prentice-Hall, New				
	Delhi, 1995.				
6	D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-				
	Wesley, Reading, MA, 1989.				

ELECTIVE-II : WASTE TO ENERGY CONVERSION									
Designation: Professional Core									
Pre-requisit	Pre-requisite Courses: Basic knowledge of Chemical Process Industry, Energy engineering								
Teaching So	cheme	Examination Scheme		Credits Allotted					
Lectures		End Semester Examination	: 50 Marks	Theory	: 04				
Total	: 04 Hours/Week	Internal Assessment	: 50 Marks	Total Credits	: 04				
		Total	: 100Marks						
Course Out	comes								
		and of the concept of Waste to	0,						
		anagement principles for prod		y form waste.					
		ble technologies for waste to e							
		understanding success and fai							
		t centralized and decentralized	d energy plants.						
6 To analy	6 To analyze the environmental implication.								
Topics Cove	r								
UNIT-I	Introduction				(08 Hours)				
	The Principles of Waste Management and Waste Utilization. Waste								
	Management Hierarchy and 3R Principle of Reduce, Reuse and Recycle.								
	Waste as a Resource and Alternate Energy source.								
UNIT-II	Waste Sources & Characterization Waste production in different sectors such as domestic, industrial, agriculture,			(08 Hours)					
	1			•					
	postconsumer, wast	e etc. Classification of waste -	- agro based, fo	brest residues,					

		domestic waste, industrial waste (hazardous and non-hazardous).				
		Characterization of waste for energy utilization. Waste Selection criteria.				
UNI	UNIT-III Technologies for Waste to Energy Biochemical Conversion Energy production from organic waste through anaerobic digestion an fermentation. Thermo-chemical Conversion – Combustion, Incineration an heat recovery, Pyrolysis, Gasification; Plasma Arc Technology and oth newer technologies.		(08 Hours)			
UNIT-IV		 Waste to Energy Options Landfill gas, collection and recovery. Refuse Derived Fuel (RDF) – fluff, briquettes, pellets. Alternate Fuel Resource (AFR) – production and use in Cement plants, Thermal power plants and Industrial boilers. Conversion of wastes to fuel resources for other useful energy applications. 				
UNIT-V		Centralized and Decentralized Waste to Energy Plants Waste activities – collection, segregation, transportation and storage requirements. Location and Siting of 'Waste to Energy' plants. Industry Specific Applications – In-house use – sugar, distillery, pharmaceuticals, Pulp and paper, refinery and petrochemical industry and any other industry. Centralized and Decentralized Energy production, distribution and use. Comparison of Centralized and decentralized systems and its operations. Carbon Credits: Carbon foot calculations and carbon credits transfer mechanisms. Indian Scenario on Waste to Energy production distribution and use in India.				
Inter	rnal ass	sessment				
1	Unders	Inderstand physical and chemical analysis of municipal solid wastes and apply them for a nanagement system that will be set up.				
2	Analyz	yze the various aspects of Waste to Energy Management Systems.				
3		gn a compost facility, incineration facility and make site selection for a landfill.				
4	Explain the hierarchical structure in solid waste management and a requirement for an integrated solution.					
5	Impler	Implement the concept of waste to energy for any one industry and make a detail report.				
6	Design a Gasifier and understand operational aspect of a typical Gasifier.					
7	Design a biomass Combustor and understand operational aspect of a biomass Combustor.					

8	Design a Biogas plant and understand the operational aspect of a Biogas plant.						
9	Report on Energy production from organic wastes through anaerobic digestion.						
10	Study energy production from algae.						
11	Environmental standards for Waste to Energy Plant operations.						
12	Understand physical and chemical analysis of municipal solid wastes and apply them for a						
	management system that will be set up.						
Te1	Te1xt Books/References						
1	K.C.Khandelwal, S.S. Mahdi "Biogas Technology - A Practical Hand Book", Vol. I & II Tata						
	McGraw Hill Publishing Co. Ltd., 1983.						
2	D.S.Challal, "Food, Feed and Fuel from Biomass", IBH Publishing Co. Pvt. Ltd., 1991.						
3	K.L.Shah, "Basic of Solid and Hazardous Waste Management Technology", Prentice Hall, Reprint						
	Edition, 2000.						
4	D.Edgard, A.Mercier, "Energy Recovery", Nova Science Publishers, 2009.						
5	W.A.Worrell, P.A. Vesilind, "Solid Waste Engineering", Cengage Learning, 2012.						
6	G. Tchobanoglous, H. Theisen, S.A. Vigil, "Integrated Solid Waste Management", Mc Graw Hill						
	Publishing Co. Ltd., 1993.						
7	P. Basu, "Biomass Gasification and Pyrolysis", Academic Press/ElsevierInc, 2010.						
Sylla	Syllabus for Unit Tests						
Unit	t Test I	Units I, II, and III					
Unit	t Test II	Units IV, V, and VI					