Bharati Vidyapeeth (Deemed to be University), Pune Faculty of Engineering and Technology Programme: B. Tech. (Electronics & Communication) – CBCS 2021 Course

B. Tech. (Electronics & Communication)) Sem III

					ng e æk)	Examination Scheme (Marks)				Credits					
Sr. No.	Course Code	Name of Course	L	Р	Т	ESE	IA	TW	OR	PR	Total	L	Р	Т	Total
11		Probability & Statistics	4	0	1	60	40	0	0	0	100	4	0	1	5
12		Switching Theory & LogicDesign	4	2	0	60	40	25	0	25	150	4	1	0	5
13		Analog Circuits & Applications	3	2	0	60	40	25	0	25	150	3	1	0	4
14		Signals & Systems	4	2	0	60	40	25	25	0	150	4	1	0	5
15		Process & Control System*	3	0	0	60	40	0	0	0	100	3	0	0	3
16		Vocational Course-I PCB Design & Assembly	0	2	0	0	0	25	25	0	50	0	1	0	1
17		Data Structures	0	2	0	0	0	25	0	0	25	0	1	0	1
18	Database Management System		0	2	0	0	0	25	0	0	25	0	1	0	1
	Total			12	1	300	200	150	50	50	750	18	06	1	25
	Social Activity- I **			-	-	-	-	-		-	-	-	-	-	2

*Industry Taught Course – I ** Add on course

		B. Tech.	(Electronics & Communication Engi PROBABILITY AND STATIST	neering) Sem III ICS				
TEACHING SCHEME:			EXAMINATION SCHEME:	CREDITS ALL	OTTED:			
Theory	: 04		End Semester Examination(UE): 60 Marks	Credits : 04				
Practica	al:		Internal Assessment(IA): 40 Marks					
Tutoria	l: 01			Credit : 01				
			Total: 100 Marks	Total Credits: 05				
Course	e Pre-re	equisites:						
The stu	idents sl	hould hav	e knowledge of					
1	Meas	ures of ce	ntral tendency, dispersion, skewness an	d kurtosis.				
C	01:	4°						
Course		uves:	hility distributions and tasting of hypot	hogia				
1	10 80	uuy proba	binty distributions and testing of hypot	110515.				
Course	e Outco	mes: A	fter learning this course students will	be able to				
1	1 Understand discrete and continuous probability distributions.							
2	Identi	fy standar	d probability distributions.					
3	Apply	bivariate	distributions.					
4	Apply	sampling	distributions.					
5	Under	stand con	cept of point estimation and interval est	imation.				
6	Apply	ANOVA	for one way and two way distribution.					
	_							
UNIT -	- 1	Probabi	lity and random variables		(08 Hours)			
		Concept	of probability, Random Variables, Pro	oability				
		Distribut	tions and Expectation: Concept of a ran	dom variable,				
		discrete						
		distribut	stributions, joint probability distributions, mean, variance,					
		covarian	ce.					
		G4 1	1 1. 4 . 1 . 4					
UNII -II Standa		Standar	d distributions		(08 Hours)			
		Gaussian	n, exponential, Rayleigh, uniform, Bern	oulli, binominal,				
		Poisson,	Normal, hyper geometric, discrete unif	orm and				
		condition	onditional					
		distribut	ions, . Functions of a random variable.					
UNIT -III		Joint Di	nt Distributions					

	Joint, marginal and conditional distributions, product moments, independent of random variables, bivariate normal distribution.					
UNIT -IV	Sampling Distributions	(08 Hours)				
	The central limit theorem, distributions of the sample mean and the sample variance for a normal population, Chi-square, t and F distributions.					
UNII -V	Estimation	(08Hours)				
	The methods of moments and the of maximum likelihood estimation, confidence intervals for the mean(s) and variance(s) of Normal populations.					
UNIT-VI	Testing of Hypothesis	(08 Hours)				
	Null and Alternative hypotheses, the critical and acceptance regions,					
	types of errors, power of the test, the most powerful test and					
	Neyman-Pearson Fundamental Lemma, tests for one sample problems for normal populations, ANOVA I & ANOVA II.					
Toxt Pools						
1. Rohat Stati	gi, V K. and Saleh, A. K. Md. Ehsanes, "An Introduction to Probabilit stics", (John Wiley and Sons), (2 nd edition)	y and				
2. J.S. M McG	lilton & J.C. Arnold, "Introduction to Probability and Statistics" Tata FrawHill Publication					
References	Books					
1. H.J. L Publ	arson, "Introduction to Probability Theory and Statistical Inference" Vication.	Wiley				
2. S.M Acad	. Ross, "Introduction to Probability and Statistics for Engineers and lemic Press.	Scientists"				
Project	Based Learning:					
Students are e illustrate with	expected prepare report on any one topic, write its definition, application few examples. Also, write pseudo code/proof for it, wherever application	ons and ble.				
1) Find the stability of the data using coefficient of variation						
2) Use concept of correlation to find coefficient of correlation between different observations						
3) Use Rank correlation to find correlation for qualitative data						
4) Derive Spearman's Rank correlation						
5) Find the chance of happening particular event using Baye's theorem						
6) Use probability theory to estimate the life of electric equipments						
7) Find the	7) Find the height, weight of the population using the example of normal distribution					
8) Check th	8) Check the goodness of fit using chi-square distribution					
9) Perform	9) Perform ANOVA for single way classification data					
10) Perform	ANOVA for two way classification data					
11) simple regression model						

12) Multiple regression model	
13) Coefficient of variation	
14) Joint and marginal probability distribution	
15) Standard probability distributions	

B. Tech. (Electronics & Communication Engineering) Sem III SWITCHING THEORY AND LOGIC DESIGN					
TEACHING			EXAMINATION SCHEME:	CREDITS ALLO	<u>FTED:</u>
Theory: 04		<u> </u>	End Semester Examination(UE): 60 Marks	Credits : 04	
Prac	tical: 0	2	Internal Assessment (IA): 40 Marks		
Tuto	orial:		TW:25 Marks & Practical:25 Marks	Credit : 01	
			Total: 150 Marks	Total Credits:05	
Cou	rse Pro	e-requisite	5:		
The	Studen	ts should h	ave knowledge of		
1	Funda	amentals of	Number Systems		
2	Know	ledge of B	polean algebra laws.		
C		• •			
	rse Ob	jectives:	ith various number representations and	annuarcian baturaan	different
	10 Ial	entation in	digital electronic circuits	conversion between	unierent
2	To int	roduce the	students to various logic gates SOP P	OS and their minimi	zation
-	techni	iques	students to various logic gates, 501, 1		Zution
3	To an	alyze logic	processes and implementation of logica	al operations using	
	comb	inational lo	gic circuits.		
4	To de	scribe, anal	yze and design sequential circuits.		
Cou	rse Ou	tcomes:	After learning this course students w	vill be able to	
1	Repr	esent nume	rical values in various number systems	and perform number	r
	conv	ersions bety	ween different number systems.		
2	Appl	y knowledg	ge of Boolean algebra and other minimi	ization techniques fo	r digital
2	Circuit design. 3 To differentiate between logic families TTL and CMOS				
3 4	 Identify formulate and solve a problem based on combinational circuits 				
5	 5 Analyze and design a simple sequential logic circuit. 				
6	6 Implement Digital circuits using VHDL systems				
· · · · · · · · · · · · · · · · · · ·					
UN	I – I	Number	system & Codes:		(08 Hours)
	Binary number base conversion decimal, octal, hexadecimal				
		numbers,	's 2's Complement, signed binary num	bers binary codes-	
		BCD code	es, Gray codes, Excess-3 code, ASCII co	ode & codes for	
	serial data transmission & storage				

Logic Gates: Positive and Negative Logic, Various Logics Gates	
with IEEE/ANSI symbols, Boolean equations, truth table and IC	
Details. Universal Gates & Derived gates	
UNIT Boolean Algebra and Simplification Techniques:	(08
II Boolean Algebra and Simplification Techniques.	(Uð Hours)
De-Morgan's theorem – switching functions Introduction, Postulates and Theorems, Various types of Boolean expressions, Simplification Techniques-K-map up to 4 variables, Product of Sum simplification & Sum of product simplification, Don't care conditions, Quine Mc-Cluskey method	
UNIT - Combinational Logic Circuits	(08
III	Hours)
Combinational Circuits and its implementations, Arithmetic Circuits – Adders and Subtractors, BCD Adder, Look-Ahead Carry Generator, ALU, Multiplier, Magnitude comparator. Multiplexer, Encoders, Demultiplexers and Decoders, Parity Generation and Checking.	
UNITE Securatial Lagia Cinquitat	///0
IV Sequential Logic Circuits:	(vð Hours)
 R-S and D Flip-flop, Level Triggered and Edge-Triggered Flip- flops, J-K and T Flip-flop, Synchronous and Asynchronous Input, Flip-flop Timing Parameters, Application of Flip-flop. Ripple Counter, Synchronous Counter, Modulus Counter, Binary Ripple Counter, Synchronous Counters, UP/Down Counters, Decade and BCD Counters, Presettable Counters, Decoding Counter, Cascading Counter, Designing Counter with Arbitrary Sequences, Shift Register, Shift Register, Counters 	
UNIT -V Programmable Logic Devices, Memory & Logic Families:	(08
Memories: ROM,PROM,EPROM Programmable Logic Devices(PLD):Programmable Logic Array(PLA),Programmable Array Logic(PAL) CPLD-FPGA Logic Families: Significance of families, Characteristic parameters, Types of Logic Families: TTL,ECL Comparison between various logic families Interfacing. between CMOS and TTL logic families	
UNIT - Introduction to VHDL:	(08
VI	Hours)
Introduction to VLSI design flow (with reference to an EDA tool), sequential, data flow and structural modeling, functions, procedures, , data objects types, attributes, packages and configurations	

The term work shall consist of record of minimum eight experiments.

- 1. Implementation of Boolean functions using logic gates.
 - 2. Study of characteristics of typical 74 TTL / 74 CMOS family like: fan in, fan out standard load , noise margin & interfacing with other families
- 3. Half, Full Adder and subtractor using gates and IC's
- 4. Code conversion using digital IC's
- 5. Function implementation using Multiplexer and Demultiplexer
- 6. BCD Adder/Subtractor using IC7483.
- 7. Study of counters : Ripple, Synchronous, Ring, Johnson, Up-down counter and its application
- 8. Study of shift registers : Shift left, Shift right, parallel loading
- 9. To model 8:1 mux, 1:8 demux using VHDL.
- 10.Sequence generator using MS-JK flip flop IC's

Text Books:

- 1. R.P. Jain, "Modern digital electronics", 3rdedition, 12th reprint TMH Publication, 2007
- 2. Anand Kumar 'Fundamentals of Digital Circuits'--. PHI
- 3. J. Bhaskar, "VHDL Primer", PHI, Third Edition (2009).

Reference Books:

- 1. J.F.Wakerly "Digital Design: Principles and Practices", 3rd edition, 4th reprint, Pearson Education, 2004.
- 2. A.P. Malvino, D.P. Leach 'Digital Principles & Applications'' –Vith Edition-Tata Mc Graw Hill, Publication
- 3. Morris Mano 'Digital Design'-- (Third Edition),.PHI
- 4. Thomas L Floyd & R.P Jain, "Digital Fundamentals" (Eight editions), Pearson

5. Stephen Brown & Zvonko Vranesic, "Fundamentals of Digital Logic Design with VHDL", Second Edition, TMH (2009).

Project based learning:

- 1. To demonstrate the use of NAND as Universal Gate
- 2. Electronic Eye using basic gates.
- 3. Light sensor switch circuit using JK-Flip-Flop
- 4. Morning sun alarm circuit using IC-4011(quad NAND gate)
- 5. To demonstrate the use of IC 555 as a Pulse Generator Circuit
- 6. Automatic switch off battery charger using IC 555
- 7. Fluid Level Control Using IC 4093
- 8. A pseudo-random number generator
- 9. 2-Bit-Parallel-or-Flash-Analog-to-Digital-Converter
- 10. Digital Bank Token Number Display
- 11. Digital Object Counter
- 12. Asynchronous-Modulo-16-Down-Counter
- 13. Analog-Signals-Multiplier
 - 14. 4-line to 16-line decoder Circuit using 7442
 - 15. Simple Electronic Toggle Switch Flip Flop Circuit Using IC 4017

B. Tech. (Electronics & Communication Engineering) Sem III ANALOG CIRCUITS AND APPLICATIONS						
TEACH SCHEN	ING IE:	EXAMINATION SCHEME:	CREDITS ALLOT	TED:		
Theory: 03		End Semester Examination(UE): 60 Marks	Credits : 03			
Practical	1:02	Internal Assessment(IA): 40 Marks				
Tutorial	:	TW:25 Marks & Practical: 25 Marks	Credit: 01			
	Total Credits:04					
Course	Pre-re	equisites:				
The Stu	dents s	hould have knowledge of				
1	Elect	ronic components and devices.				
	<u></u>					
Course	Objec	tives:	• •	<u>c</u> :		
1	To u	nderstand analysis of single stage and mult	istage transistor ampli	fier.		
2	To g	ive a practical approach of analysis of feed	back amplifiers ,powe	r amplifiers		
	and o	oscillators				
3	To u	nderstand analysis and design of voltage re	egulators.			
Course	Outco	mes: After learning this course studen	nts will be able to			
1	Desc	ribe and demonstrate BJT single stage am	plifier, its hybrid equi	valent and		
	hybri	id models.				
2	Anal	yze multistage amplifiers using BJT.				
3	Anal	yze the importance of negative feedback in	amplifiers.			
4	Dem	onstrate and analyze power amplifier circu	its in different modes	of operation.		
5	Design various oscillator circuits using BJT.					
6	6 Design and analyze transistorized series and shunt voltage regulators.					
$UNIT - I \qquad S$		Single stage Amplifiers		(06 Hours)		
		Classification of Amplifiers – Distor Analysis of CE, CC, and CB Configurat Hybrid Model, Analysis of CE amp Resistance and Emitter follower, Miller's Design of Single Stage RC Coupled Amplifier using BJT.	tion in Amplifiers, tions with simplified olifier with Emitter Theorem and its dual,			

UNIT – II	Multi Stage Amplifiers	(06 Hours)			
	Need of Multistage amplifiers, Parameter evaluation such as Ri, Ro, Av, Ai & Bandwidth for general multi stage amplifier, Analysis & design at low frequency & mid frequency of direct coupled, RC coupled, transformer coupled (Two stage) amplifier, Darlington amplifier, cascode amplifier				
UNIT - III	Feedback Amplifiers	(06 Hours)			
	Concept of feedback, classification of amplifiers, Negative feedback topologies with their block diagram representation, Effect of negative feedback on Input impedance, Output impedance, Gain and Bandwidth with derivation, method of analysis of feedback amplifier, analysis of all feedback topologies.				
UNIT -IV	Power Amplifiers	(06 Hours)			
	classification of power amplifiers - Class A, Class B, Class C, and Class AB. Operation of - Class A with resistive load; Transformer coupled class A Amplifier; Class B Push – pull amplifier ; Class B Complementary symmetry amplifier. Efficiency analysis for Class A transformer coupled amplifier and Class B push – pull amplifier, cross over distortion in power amplifiers, harmonic analysis				
UNIT -V	Oscillators	(06 Hours)			
	Positive feedback, Barkhausen criterion, Classification of oscillators, derivation and analysis of RC oscillators, Wien bridge Oscillators, LC Oscillators for frequency of oscillation, Tuned collector oscillator, Piezo-electric effect in crystals and Crystal Oscillator				
UNIT -VI	Regulator	(06 Hours)			
	Block schematic of linear regulators, Performance parameters – Load and Line regulations, Ripple rejection, Output resistance Emitter follower regulator, Transistor series regulator, shunt regulator Study and design of regulators using IC's:78XX, 79XX, 723, LM317, Method of boosting output current using external series pass transistor. Protection circuits – Reverse polarity protection, over circuit, fold back current limiting, over voltage protection.				
Term Work•					
The term work	s shall consist of record of minimum eight experiments.				
1. Analysis of multistage LF amplifier, verification with theoretical values of A_{is} , A_{vs} ,					

R_i , R_o (overall) with square wave testing.
2. Input impedance improvement techniques for emitter follower.
3. Analysis of LF amplifier with negative feedback in Voltage series and current series
topology.
4. Analysis of LF amplifier with negative feedback in Voltage shunt and current shunt
topology.
5. Measurement of frequency of oscillations of RC Oscillators - phase shift and when bridge
7. Discing analysis of PIT nower emplifier in along A. P. C.
7. Diasing analysis of BJ1 power amplifier in class A, B, C. 8. Population observatoristic of sories and shunt regulators and calculation of S and P
8. Regulation characteristic of series and shuft regulators and calculation of S_{v} and K_{0} .
Taxt Books:
1 S. Saliyahanan Surash Kumar Vallavarai "Elastronia daviass and sirayita" Ma Gray
Hill Publication
2 Robert Boylestad "Electronic Devices and Circuit Theory" Pearson Publication
2. Robert Doylestud, Electronic Devices and Chedit Theory, Tearson Tubleation
Reference Books:
1. Allen Mottershed, "Electronic Devices and Circuits", PHI Publication
2. J.B. Gupta, "Electronic Devices and Circuits", Kaison Educational Series
3. Raghbir Singh Khandpur, "Printed circuit boards: Design, fabrication, assembly and
testing", 2006, ISBN 10:0071464204, McGraw Hill
Project Based Learning:
Build the following circuits -
1. A single stage common emitter amplifier.
2. RC coupled multistage amplifier.
3. Darlington amplifier.
4. Voltage shunt negative feedback amplifier.
5. Current shunt negative feedback amplifier.
6. Voltage series negative feedback amplifier.
7. Current series negative feedback amplifier.
8. Class A, B, C power amplifier.
9. RC phase shift oscillator using BJT.
10. Colpitt's oscillator using BJT.
11. Hartley oscillator using BJT.
12. Shunt voltage regulator using zener diode.
13. Series voltage regulator.
14. IC 723 as basic high/low voltage regulator with fold back current limiting.
15. Flashing LED using astable multi vibrator.

15. Flashing LED using astable multi vibrator. Students in a group of 3 to 4 shall complete any one project from the above list.

B. Tech. (Electronics & Communication Engineering) Sem III SIGNALS AND SYSTEMS						
TEAC SCHI	CHIN EME	<u>NG</u> :	EXAMINATION SCHEME:	CREDITS ALL	OTTED:	
Theor	ry: 04	-	End Semester Examination(UE): 60	Credits : 04		
Dracti	cal ()2	Marks			
Tracti)2	TW-25 Marks & Oral-25 Marks	Credit · 01		
Total:150 Marks Contractor Total Credits: 05					·	
			Total. 150 Walks			
Cours	se Pr	e-requisite	S:			
The st	tuden	ts should ha	ave knowledge of			
1	Dif	ferential and	l Integral calculus			
2	Vec	tor algebra	and algebra of complex numbers			
Com						
	Se Or	understand t	the behavior of signals in time and frequer	ev domain		
2		understand	the characteristics of LTL systems			
3	To	analyze con	tinuous and discrete time systems using di	fferent transform	techniques.	
		, , , , , , , , , ,			1	
Cours	se Oı	itcomes:	After learning this course students will	be able to		
1	Clas	ssify signals	and perform operations on signals.			
2	Ana	alyze LTI sy	stems using convolution.			
3	App	oly Fourier	series and Fourier Transform for analysis of	of signals.		
4	Ana	alyze CT sig	nals and systems using Laplace transform	•		
5	Apr	oly Z-transfe	orm for the analysis of DT signals and syst	tems.		
6	San	nple and rec	onstruct the signals using sampling technic	que.		
		1		•		
UNIT	' – I	Introducti	on and Classification of signals:		(08	
		~			Hours)	
Signals an			d Systems definition, Types of signals, cont	tinuous time and		
Discrete time signal operations, Amplitude scaling, Time shifting,						
Time reversal, Time scaling, Mathematical operations additions,						
subtrac			n, multiplication of signals, Classificat	tion of signals		
		according to their property, Periodic/Aperiodic, Even/Odd,				
		Energy/Po	wer/Causal/Non causal, Deterministic/Rar			
UNIT –		Time domain representation of LTI System:				

II		Hours)			
	Introduction to systems, Classification of systems according to their				
	properties, Linear/Nonlinear, Static /Dynamic, Time Invariant/Time-				
	variant, Causal/non causal, Stable/Unstable, Invertible/Non Invertible				
	systems, LTI system: Causality, stability, step response, impulse				
	response. Convolution Integral. convolution sum using				
	graphical method properties and applications.				
	Series and the feature and after and a				
UNIT-	Fourier Analysis of Signals:	(08			
III	Fourier Series: - Review of Fourier series of CT and DT signals and	Hours)			
	its properties (No derivation). Exponential and Trigonometric Fourier				
	series of periodic signals amplitude and phase spectra of periodic				
	signals Fourier Transform and its properties				
	signals, i ourier transform and its properties.				
UNIT-IV	Application of Laplace Transform in Signal processing:	(08			
	II	Hours)			
	Review of Bilateral and Unilateral Laplace Transform of signals,				
	ROC and its properties. Laplace transforms of standard signals,				
	Inverse Laplace Transform, Solution to differential equation, System				
	representation				
		(00			
UNIT-V	Z-transform	(08 Hours)			
	Z-transform, Region of convergence and its properties. Inverse z-	nouisj			
	transform, properties of z transform, relation between Z and Laplace				
	Transform, Analysis and characterization of discrete time LTI				
	systems using z-transform.				
		(00			
UNIT-VI	Sampling and Correlation:	(08 Hours)			
	Sampling theorem sampling and reconstruction of signal from its	110015)			
	samples using interpolation Effect of under sampling Correlation				
	Autocompletion and areas completion of anerey and neuron sized				
	Autocorrelation and cross-correlation of energy and power signals,				
	properties of correlation functions, applications of Correlation,				
	Energy Density Spectrum, Parsevals Theorem, Power Density				
	Spectrum,				
Torrectory	I				
<u>1 Intr</u>	K: Enduction to MATLAB and its basic functions				
2 Gen	erate Continuous and discrete time signals				
3. Perf	Form signal operations on Continuous and discrete time signals				
4. Find	l even and odd part of the signal and sequence and find real and imagina	ry parts of			
sig	nal.	* 1			
5. Con	npute linear convolution and convolution integral of sequences/signals.				
6. Compute Fourier Transform and Inverse Fourier Transform of a given signal					

/sequence and	plot its Magnitude	and Phase Spectra.
1	1 0	1

- 7. To compute and plot the impulse response and pole-zero diagram of transfer function using Laplace transform.
- 8. To compute and plot the impulse response and pole-zero diagram of transfer function using Z-transform.
- 9. Compute auto correlation and cross correlation between signals and sequences and verify its properties.
- 10. Verify sampling theorem and reconstruct the signal.

Text Books:

- 1. Oppenheim, Willsky, S.Hamid Nawab, "Signals and Systems", PHI, 2nd edition, 2002.
- 2. M.J. Roberts, "Signals and Systems", McGraw-Hill, 1st edition, 2003.
- 3. B.P Lathi, "Principles of linear systems and signals", Oxford, 2nd edition, 2009.

Reference Books:

- 1. Simon Haykin and Bary Van Veen, "Signals and Systems", Wiley- India Publications
- 2. Michal J. Roberts and Govind Sharma, "Signals and Systems", Tata Mc-Graw Hill Publications

Project Based Learning:

- 1. Generate basic signals using C / Python programming.
- 2. Perform multiple operations on signal using C or MATLAB.
- 3. Visualize signal/data in time and frequency domain using MATLAB.
- 4. Find the Trigonometric Fourier Series of a given Signal using C/Python/MATLAB.
- 5. Create Frame-Based Signals using MATLAB Simulink.
- 6. Create Multichannel Signals by combining single channel signals using Simulink.
- 7. Create Multichannel Signals by combining multichannel signals using Simulink.
- 8. Inspect sample and frame rate using Simulink.
- 9. Perform Linear Convolution of two sequences using SCILAB.
- 10. Represent, Play and plot audio signals with different sampling frequencies using MATLAB.
- 11. Study of Signal Processing Sound Effects: Introducing a delay, creating an echo effect by repeating the signal, time scaling, time reversal, volume scaling.
- 12. Create acoustic environment in Simulink.
 - 13. Develop a Python application to generate digital signals.
- 14. Perform measurement using spectrum analyzer using MATLAB Simulink.
- 15. Filter the frames of noisy wave using MATLAB.

		B. Tech. (Electronics & Communication Engineering) Sem III ITC-I: PROCESS AND CONTROL SYSTEM				
TEA SCH	CHIN EME:	G EXAMINATION SCHEME: CREDITS ALL	OTTED:			
Theo	ry: 03	End Semester Examination(UE): 60 Credits : 03 Marks				
Pract	ical:	Internal Assessment(IA): 40 Marks				
Tuto	rial:					
		Total:100 Marks Total Credits: 03				
Cour	se Pre	e-requisites:				
The S	Studen	ts should have knowledge of				
1	Basic	knowledge of signals.				
2	Basic	mathematical tools like Laplace Transform.				
Cour	rse Ob	jectives:				
1	This	course provide in depth knowledge of various control system.				
2	2 It introduces the stability of system, transducers, DAS etc.					
Cour	se Ou	tcomes: After learning this course students will be able to				
1	Ident	ify various control systems and determine the 'transfer function' of Systems	stem using			
	block	diagram reduction and Signal flow graph.	C			
2	Deter	rmine the error in various control systems.				
3	Evalı	ate the stability of a system using Routh's stability criteria, root locus,	bode plot			
	etc.					
4	Illust	rate different specifications of the system in frequency domain.	1 /			
5	Meas	sure non-electrical quantities such as displacement, temperature, angula	ar speed etc			
6	Com	suitable transducer.	vativa (D)			
U	PL P	ID.	valive (D),			
	,					
UNI	T – I	Control System Classification	(06 Hours)			
		Open loop, closed loop, Feedback and Non-feedback Systems.				
		continuous, discrete, linear and non-linear control systems. Transfer				
		Function, Analysis of T.F. using Block diagram and signal flow				
		graph.				
υνιτ	- 11	Time Domain Analysis	(06 Hours)			
		Transient and steady state responses of first and second order				

	systems, steady state errors, control of transient response, Basic control actions and their effects on transient and steady state responses.	
UNIT-III	Stability	(06Hours)
	Stability concepts, Routh Hurwitz criterion, Root loci, properties and construction of root loci, effects of adding of poles and zeros, root locus of conditionally stable systems.	
UNIT-IV	Frequency Domain Analysis	(06Hours)
	Bode plot, gain, magnitude and phase shift plots, frequency domain specifications, peak resonance and resonant frequency of a second order system, gain margin and phase margin, conditionally stable system.	
UNIT -V	Transducers	(06Hours)
	Classification of Transducers and its Characteristics. RTD, Thermocouple, Thermister, capacitive transducer, LVDT, strain gauge, Electromagnetic flow-meter, Piezoelectric Accelerometer, tacho-generators. Internet Things (IoT) for wireless sensor networks.	
UNIT -VI	Controllers	(06Hours)
	Control actions – On/Off Controller, Proportional Controller, Integral Controller, Derivative Controller, Proportional- Integral(PI) Controller, Proportional-Derivative(PD) Controller, PID Controller.	
Assignme	nts:	
It shall con	sist of record of minimum six assignments.	
1. Tran	ister function of closed loop system.	
2. Trail	raw Root Locus theoretically and verify it	
4. To d	raw Bode plot theoretically and verify it.	
5. To s	tudy characteristics of temperature transducer.	
6. To S	tudy characteristics of LVDT for displacement measurement.	
7. Stud	y of Strain Guage.	
8. Inter	net Things (IoT) for wireless sensor networks.	
<i>9</i> . Stuu	y of various controners.	
Text Book	s:	
1. A. K Dha	L Sawhney, "Electrical and Electronic Measurements and Instrumentat anpt Rai and Co. Ltd	ion",
Doforance	Pooks	
1. J	Nagrath & M. Gopal, "Modern Control Engineering", New Age Inter New Delhi (Fifth Ediion) 2007	national,

- 2. H S Kalsi, "Electronic Instrumentation", Tata McGraw-Hill.
- 3. Ogata, K., "Modern Control Engineering", Prentice Hall, second edition, 1991

Project Based Learning:

- 1. Design of a Lead Compensator.
- 2. Design of a Lag Compensator.
- 3. Displacement measurement using "Linear Variable Differential Transformer".
- 4. Design of Temperature control system using RTD.
- 5. Design of Temperature measurement system using thermocouple.
- 6. Design of Temperature control system Using Thermistor.
- 7. Design of Load Cell using Strain Guage.
- 8. Application Internet Things (IoT) using wireless sensor.
- 9. Transient response analysis for second order system.
- 10. Design and Simulation of Root Locus for given system.
- 11. Design and Simulation of Bode plot for given system.
- 12. Design of on-off controller.
- 13. Design of Proportional controller.
- 14. Design of Integral controller.
- 15. Design of Proportional-Integral controller.
- 16. Design of Proportional-Integral-Derivative controller.
- Students in a group of 3 to 4 shall complete any one project from the above list.

TEACHING SCHEME: Theory: Practical: 02 Tutorial: Course Pre-re The Students s 1 Basic kn Course Object 1 Become 2 This cou 3 It also it Course Outco 1 Design of 2 Become	VOCATIONAL COUL PCB DESIGN & ASSE PCB DESIGN & ASSE EXAMINATION SCHEME: End Semester Examination(UE). Internal Assessment(IA): TW:25 Marks & Oral: 25 Marks Total:50 Marks requisites: should have knowledge of cnowledge of Electronic components. strives: e familiar with the simulation software.	RSE-I MBLY CREDITS ALLOTTED: Credits : 01 Total Credits: 01					
TEACHING SCHEME:Theory:Practical: 02Tutorial:Course Pre-regThe Students s1Basic knCourse Object1Become2This cou3It also itCourse Outcot1Design of2Become	PCB DESIGN & ASSE EXAMINATION SCHEME: End Semester Examination(UE) Internal Assessment(IA): TW:25 Marks & Oral: 25 Marks Total:50 Marks requisites: should have knowledge of cnowledge of Electronic components. e familiar with the simulation software. wreage provide in domth brownledge of DCD	CREDITS ALLOTTED: Credits : 01 Total Credits: 01					
TEACHINGSCHEME:Theory:Practical: 02Tutorial:Course Pre-reThe Students s1Basic knCourse Object1Become2This cou3It also itCourse Outco1Design of2Become	EXAMINATION SCHEME: End Semester Examination(UE) Internal Assessment(IA): TW:25 Marks & Oral: 25 Marks Total:50 Marks requisites: should have knowledge of cnowledge of Electronic components. e familiar with the simulation software. wrea provide in dorth browledge of DOD	CREDITS ALLOTTED: Credits : 01 Total Credits: 01					
SCHEME:Theory:Practical: 02Tutorial:Course Pre-redThe Students s1Basic knCourse Object1Become2This cou3It also itCourse Outcot1Design of2Become	End Semester Examination(UE) Internal Assessment(IA): TW:25 Marks & Oral: 25 Marks Total:50 Marks requisites: should have knowledge of cnowledge of Electronic components. ctives: e familiar with the simulation software.	Credits : 01 Total Credits: 01					
Theory:Practical: 02Tutorial:Course Pre-regThe Students signed1Basic knCourse Object1Become2This course3It also itCourse Outcot1Design of2Become	requisites: should have knowledge of cnowledge of Electronic components. should have knowledge of cnowledge of Electronic components.	Credits : 01 Total Credits: 01					
Practical: 02 Tutorial: Course Pre-re The Students s 1 Basic kr Course Objec 1 Become 2 This cou 3 It also f Course Outco 1 Design of 2 Become	Internal Assessment(IA): TW:25 Marks & Oral: 25 Marks Total:50 Marks requisites: should have knowledge of cnowledge of Electronic components. ectives: e familiar with the simulation software.	Credits : 01 Total Credits: 01					
Tutorial: Tutorial: Course Pre-reg The Students state 1 Basic kn Course Object 1 Become 2 This course 3 It also it Course Outcot 1 Design of 2 2 Become	TW:25 Marks & Oral: 25 Marks Total:50 Marks requisites: should have knowledge of cnowledge of Electronic components. e familiar with the simulation software. wrea provide in donth browledge of DCD	Credits : 01 Total Credits: 01					
Course Pre-reThe Students s1Basic kiCourse Object1Become2This cou3It also iCourse Outcot1Design of2Become	Total:50 Marks requisites: should have knowledge of cnowledge of Electronic components. ctives: e familiar with the simulation software.	Total Credits: 01					
Course Pre-reThe Students s1Basic krCourse Object1Become2This course3It also itCourse Outcot1Design of2Become	requisites: should have knowledge of cnowledge of Electronic components. ectives: e familiar with the simulation software.						
Course Pre-reThe Students is1Basic kiCourse Object1Become2This course3It also itCourse Outcot1Design it2Become	requisites: should have knowledge of cnowledge of Electronic components. ectives: e familiar with the simulation software.						
The Students s1Basic kiCourse Object1Become2This cout3It also itCourse Outcot1Design of2Become	should have knowledge of cnowledge of Electronic components. ectives: e familiar with the simulation software.						
1Basic kiCourse Object1Become2This cou3It also i3It also iCourse Outcot11Design of2Become	ectives: e familiar with the simulation software.						
Course Object1Become2This cout3It also itCourse Outcot11Design of2Become	ectives: le familiar with the simulation software.						
Course Object1Become2This course3It also itCourse Outcot11Design of2Become	ectives: le familiar with the simulation software.						
1Become2This cou3It also iCourse Outco1Design o2Become	e familiar with the simulation software.						
2This course3It also itCourse Outco1Design it2Become	unce mouride in death line unlader of DOD	1 Become familiar with the simulation software.					
3It also itCourse Outco1Design of2Become	2 This course provide in depth knowledge of PCB design.						
Course Outco1Design2Become	3 It also introduces the PCB manufacturing.						
Course Outco1Design2Become							
1Design2Become	comes: After learning this course stude	nts will be able to					
2 Become	1 Design electronic circuits, create a schematic, PCB layout.						
	2 Become proficient with software skills using EDA tool, for drawing electronic circuit						
Schema	Schematic and PCB Layout.						
3 Fabrica	ate a Prototype PCB using EDA tool.						
4 Demons	strate the knowledge of selecting proper P	CB primitives.					
5 Use PC	B design software for simple single sided	PCB artwork design.					
6 Identify and select appropriate soldering tools for the soldering job.							
		<u> </u>					
Unit-I C	Component Selection						
D	Principles and Process of Electronic Compo	onent Selection:					
P	Electrical parameters, Mechanical paran	neters . Performance,					
E PI	Quality, Availability and price, PCB footprint with Dual -in-						
E Q		Packages.(SMP)/ SMD.					
E Q L	Line Package (DIP) and surface mount l						
	Line Package (DIP) and surface mount l						
Unit-II So	Line Package (DIP) and surface mount 1 Schematic design	ve and passive electrical					
Unit-II So	Line Package (DIP) and surface mount I Schematic design Electrical connection between different acti	ve and passive electrical					
Unit-II So	Line Package (DIP) and surface mount 1 Schematic design Electrical connection between different acti components like resistors, capacitors, Integr	ve and passive electrical rated circuits IC.					
Unit-II Second	Line Package (DIP) and surface mount I Schematic design Electrical connection between different acti components like resistors, capacitors, Integr Connectivity and functionality between diff	ve and passive electrical rated circuits IC. erent components.					
6 Identify	y and select appropriate soldering tools for Component Selection Principles and Process of Electronic Compo Electrical parameters, Mechanical paran Duality, Availability and price. PCB foot	the soldering job. onent Selection: neters . Performance, orint with Dual -in- Packages.(SMP)/ SMD.					

Unit-III	Circuit Design				
	Design specification. Circuit Design theoretically and				
	implementing on Breadboard, verification and testing.				
Unit-IV	PCB Design				
	Introduction to PCB Design using EDA tool. Design of single sided				
	PCB, Design of Double sided PCB. Verification and testing. PCB				
	Design Implementation with print-out or Gerber file.				
Unit-V	PCB fabrication				
	PCB Manufacturing Process Steps: Design and Output From File				
	to Prototype machine/Film, Printing the Inner layers, Removing				
the Unwanted Copper, Layer Alignment and Optical Inspection,					
Layer-up and Bond, Drill, Plating and Copper Deposition, Outer					
Layer Imaging, Final Etching, Solder Mask Application, Surface					
machine/Chemical method.					
Unit-VI	Soldering of Component				
	Materials and Equipment: soldering iron, Rosin core solder,				
	Sponge, Solder braid etc. PCB Protection Chemicals.				
	Soldering and de-soldering of Components.				
PCB Plant	Visit: At the end of course students should visit to PCB manufacturing	g company.			
Text Book	s:				
1. R.S. Kh	andpur, "Printed Circuit Boards: Design, Fabrication, and Assembly"				
,McGra	aw-Hill Electronic Engineering				
2. Coombs	Clyde, "Printed Circuits Handbook", McGraw-Hill Education				

B. Tech. (Electronics & Communication Engineering) Sem III DATA STRUCTURES							
TEACHING SCHEME:	EXAMINATION SCHEM	E: <u>CREDITS ALLOTTED:</u>					
Theory:	End Semester Examination(UE):					
Practical: 02	Internal Assessment(IA):						
Tutorial:	TW:25 Marks	Credits:01					
	Total:25 Marks	Total Credits: 01					
Course Pre-req	uisites:						
The Students sh	ould have knowledge of						
1 Knowled	ge of C programming						
Course Objecti	ves:						
1 This cou various a graph an	This course provides in depth knowledge of the various types of data structures and various algorithms. Also it introduces the programming for linked list, stack, queues, graph and tree.						
Course Outcon	es: After learning this course st	udents will be able to					
I Write a p	brogram using data structure and its	types.					
2 Define v	Define various operations on linked and double linked lists.						
3 Impleme	nt stacks and queues involving linke	ed list.					
4 Perform	operations on a tree using linked list						
5 Create a	graph using adjacency list & travers	e it using BFS & DPS methods.					
6 Find the	snortest path in each graph using al	gorithm.					
Torm Works							
The term work:	shall consist of record of minimum	n eight experiments					
	to soorch for record from a given lie	at of records stored in array using					
i) Linear	search	st of records stored in array using					
i) Elicar	v search						
2 Program	to sort an array of names using						
i) Bubble	sort						
ii) Inserti	i) Insertion sort						
iii) Ouick	c sort						
3. Program	to implement following operation o	n singly linked list:					
i) Create							
ii) Delete							
iii) Insert							
iv) Displ	ay						
v) Search	1						

4. Program to add two polynomials using linked list.
5. Program to implement stack using:
i) Array
ii) Linked list
6. Program to convert an infix expression to postfix expression & evaluate the resultant
expression.
7. Program to Implement Queue using: (i) Array (ii) linked list
8. Program to create a Binary search tree & Perform following primitive operation on it:
i) Search
ii) Delete
iii) Traversals (inorder, pre-order, post-order -recursive)
iv) Non-recursive in order traversal
9. Program to create a graph using adjacency list & traverse it using BFS & DPS
methods
Text Books:
1. ISRD group, "Data structure using C", TMH.
2. Yashwant kanetkar "Data Structure through C", BPB Puplication.
Reference Books:
1. AM Tanenbaum, Y Langsam and MJ Augustein "Data structure using C", Prentice
Hall India.
2 Waiss Mark Alley "Data structure and Algorithm Analysis in C" Addison Wasley
2. Weiss, Mark Allen, Data structure and Algorithm Analysis in C, Addison wesley.
3. Richard F Gilberg Behrouz A. Forouzan, Thomson ,"Data structure – A Pseudocode

Approach with C", Cengage Learning India 4. Yashwant Kanetkar , "Let us C" ,BPB Publication

	B. Tech. (Electronics & Communication Engineering) Sem III DATABASE MANAGEMENT SYSTEM						
TEA SCH	<u>CHING</u> EME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:				
Theory:		End Semester Examination(UE):					
Prace	tical: 02	Internal Assessment(IA):					
Tuto	rial:	TW:25Marks	Credits:01				
		Total:25 Marks	Total Credits: 01				
Cou	rse Pre-requisite	s:					
The	Students should h	ave knowledge of					
1	Computational (C.					
	Companyan						
Cou	rse Objectives:						
1	To explain basic	c database concepts, applications, data	models, schemas and instances.				
2	To demonstrate	the use of constraints and relational al	gebra operations.				
3	3 Describe the basics of SQL and construct queries using SQL.						
4	To emphasize the importance of normalization in databases.						
5	5 To facilitate students in Database design						
6	6 To familiarize issues of concurrency control and transaction management						
	I						
Cou	rse Outcomes:	After learning this course students	will be able to				
1	Apply the basic	concepts of Database Systems and Ap	plications.				
2	2 Use the basics of SQL and construct queries using SQL in database creation and interaction						
3	Design a commercial relational database system (Oracle, MySQL) by writing SQL using the system						
4	Analyze and Se	lect storage and recovery techniques o	f database system.				
5	5 Use Algorithms to solve scheduling conflict.						
6	6 Apply Algorithms in distributed database.						
Expe	eriment List						
1	. Conceptual Des	igning using ER Diagrams (Identifying	g entities, attributes, keys and				
	relationships b	etween entities, cardinalities, generaliz	zation, specialization etc.) Note:				
	Converting ED	Model to Polotional Model (Dermanus	EK Diagram to the Lab teacher.				
2	. Converting ER	Model to Relational Model (Represent	fring keys) Note: Student is				
	required to sub	met a document showing the database	tables created from FR Model				
3	Normalization -	To remove the redundancies and anon	alies in the above relational				
	tables, Normal	ize up to Third Normal Form					
•							

4. Creation of Tables using SQL- Overview of using SQL tool, Data types in SQL, Creating Tables (along with Primary and Foreign keys), Altering Tables and Dropping Tables

5. Practicing DML commands- Insert, Select, Update, Delete

6. Practicing Queries using ANY, ALL, IN, EXISTS, NOT EXISTS, UNION,

7. Practicing Sub queries (Nested, Correlated) and Joins (Inner, Outer and Equi)..

- 8. Practice Queries using COUNT, SUM, AVG, MAX, MIN, GROUP BY, HAVING, VIEWS Creation and Dropping.
- 9. Practicing on Triggers creation of trigger, Insertion using trigger, Deletion using trigger, Updating using trigger
- 10. Procedures- Creation of Stored Procedures, Execution of Procedure, and Modification of Procedure.
- 11. Cursors- Declaring Cursor, Opening Cursor, Fetching the data, closing the cursor.

Text/Reference Books:

1.Silberschatz A., Korth H., Sudarshan S., "Database System Concepts", McGraw Hill Publishers, ISBN 0

2. Connally T, Begg C., "Database Systems", Pearson Education, ISBN 81

3. Pramod J. Sadalage and Martin Fowler, "NoSQL Distilled", Addison Wesley, ISBN10: 0321826620, ISBN

				Teaching Scheme (Hrs./Week) Examination Scheme (Marks)						Credits					
Sr. No.	Course Code	Name of Course	L	Р	Т	ESE	IA	TW	OR	PR	Total	L	Р	Т	Total
19		Digital Communication	3	2	0	60	40	25	25	0	150	3	1	0	4
20		Microcontroller & Applications	4	2	0	60	40	25	0	25	150	4	1	0	5
21		EM Waves & Propagation	4	0	1	60	40	0	0	0	100	4	0	1	5
22		Integrated Circuits& Amplifier Design	4	2	0	60	40	25	0	25	150	4	1	0	5
23		Essentials of Data Science*	3	0	0	60	40	0	0	0	100	3	0	0	3
24		Vocational Course-II Domestic Appliances & Maintenance	0	2	0	0	0	25	25	0	50	0	1	0	1
25		Java Programming	0	2	0	0	0	0	25	0	25	0	1	0	1
26		Linux Programming	0	2	0	0	0	25	0	0	25	0	1	0	1
		Total	18	12	1	300	200	125	75	50	750	18	6	1	25
		MOOC-I**				-	-					-	-	-	2

B. Tech. (Electronics & Communication) Sem IV

*Industry Taught Course – II

** Add on course

B. Tech. (Electronics & Communication Engineering) Sem IV DIGITAL COMMUNICATION							
TEACHING SCHEME:			EXAMINATION SCHEME: CR	EDITS AL	LOTTED:		
Theory: 03			End Semester Examination(UE): Cre 60 Marks	edits : 03			
Practi	ical: 02		Internal Assessment (IA) :40Marks				
Tutorial:			TW:25 Marks & Oral: 25 Marks Cre	edit: 01			
			Total:150 Marks Tot	al Credits: ()4		
Cour	se Pre-	requisites	:				
The S	tudent	s should ha	we knowledge of				
1	Elect	ronic com	nunication				
2	2 Signals & Systems						
3	Proba	ability and	Statistics				
Cour	se Obj	ectives:					
1	1 To understand the building blocks of digital communication system.						
2	2 To prepare mathematical background for communication signal analysis.						
3	To understand the basics of baseband and pass band digital communication systems.						
4	4 To acquire the knowledge of spread spectrum communication systems.						
0	0.4						
	se Out	comes:	After learning this course students will be	able to			
		y different	sampling techniques to convert analog signa	al into discre	ete sequence		
2	Lear	the gener	ation and detection of hand pass modulation	techniques			
5 Learn the generation and detection of band pass modulation techniques							
design Scrambler and Un-scrambler. Characterize, sketch various Line Codes					Codes		
5 Evaluate probabi			bility of error in various digital modulation te	echniques			
6	6 Describe the digital communication system with spread spectrum modulation						
TTATT	T T			I			
UNI	1 – 1	Pulse Mo	odulation		(06 Hours)		
		Introduct	ion to Digital Communication System	n, digital			
		represent	ation of analog signal, advantages o	of digital			
		communi	ication. Pulse Modulation, Sampling Theorem	rem (time			
		domain a	analysis) ideal sampling, Natural sampling	, Flat top			
		sampling	, aliasing effect and aperture effect. Nyquis	st criteria,			
		Pulse Am	plitude Modulation (PAM), Pulse Width M	odulation,			
		Pulse Pos	Sition				
		Modulati	on, Their generation and Demodulation.				

UNIT – II	Digital transmission of analog signals	(06 Hours)
	Quantization–Uniform, Non-Uniform, Companding, A-Law,	
	μLaw,	
	Pulse code modulation Delta Modulation, Adaptive	
	Della Modulation Differential Pulse Code Modulation	
	Wodulation, Differential I dise Code Wodulation.	
UNIT -III	Band pass Modulation Techniques	(06 Hours)
	ASK, PSK, FSK, Binary Phase shift keying, Differential Phase shift keying, Differential encoded PSK, Quadrature PSK, M- ary PSK, Quadrature Amplitude shift keying (QASK), Binary frequency shift keying, Minimum shift keying (MSK), signal space representation and constellation diagram	
UNIT -IV	Baseband Digital Transmission	(06 Hours)
	Digital Multiplexing: Multiplexers and hierarchies, Data Multiplexers. Data formats and their spectra, synchronization: Bit Synchronization, Scramblers, Frame Synchronization. Inter-symbol Interference, Equalization.	
UNIT -V	Baseband Receivers	(06 Hours)
01411 - 4		(00 110013)
	Base band signal receiver, Probability of error, Optimum filter, White noise-Matched filter, probability of error of matched filter, correlation, FSK, PSK, non-coherent detection of FSK, DPSK, QPSK, Calculation of error probability for BPSK &BFSK, Signal space to calculate Pe.	
UNIT -VI	Spread Spectrum Techniques	(06 Hours)
	Introduction, Generation of PN Sequences and its properties, Direct Sequence Spread Spectrum Signals, Frequency Hopped Spread Spectrum Signals, Introduction to Multiple Access Techniques: CDMA, TDMA, FDMA.	
Torm Worls		
The term wo	k shall consist of record of minimum eight experiments	
1. To ver	ify the sampling theorem	
2. To per	form Pulse Code Modulation System (PCM) System	
3. To ana	lyze a Delta modulation system and interpret the modulated and d	emodulated
wavefo	orms	
4. To ana $\frac{1}{1}$	lyze Adaptive Delta modulation system and interpret the modulat	ed and
demod	Iulated waveforms	
$\frac{J}{6}$ To and	lyze ASK (Amplitude Shift Keying) System with waveforms	
7. To ana	lyze FSK (Frequency Shift Keying) System with waveforms	

8. To analyze of Quadrature Phase Shift Keying (QPSK) with waveforms

- 9. To simulate any digital modulation scheme using MATLAB
- 10. To analyze waveforms of different Data Formats

Text Books :

- 1. Sklar, Bernard, "Digital Communications, Fundamentals & Applications," Second Edition, Prentice-Hall Inc., 2001.
- 2. Lathi B P, and Ding Z "Modern Digital and Analog Communication Systems," Fourth Edition, Oxford University Press.
- 3. Leon W. Couch, "Digital and Analog Communication Systems", Sixth Edition, Pearson Education, 2001.

Reference Books:

- 1. Haykin Simon, "Digital Communication Systems," Forth Edition, John Wiley and Sons, New Delhi.
- 2. Taub, D. Schlling, and G. Saha, "Principles of Communication Systems," Third Edition, Tata McGraw Hill.
- 3. John G. Proakis, "Digital Communication", Fifth Edition, Pearson Education.

Project Based Learning:

Implement following systems using matlab and simulink

- 1. Sampling of the given signal
- 2. Pulse Width Modulation generator
- 3. Pulse Position Modulation generator
- 4. Pulse Amplitude Modulation generator
- 5. Delta modulation system
- 6. Quantization of an audio signal
- 7. Pulse code modulation system
- 8. Frequency Shift Keying modulator
- 9. Amplitude Shift Keying modulator
- 10. Phase Shift Keying modulator
- 11. Quadrature Phase Shift Keying modulator
- 12. Unipolar RZ Line coding scheme
- 13. Bipolar RZ and NRZ line coding scheme
- 14. Random binary sequence generator
- 15. Generate the sound

	B. Tech. (Electronics & Communication Engineering) Sem IV MICROCONTROLLER & APPLICATIONS							
TEACHING SCHEME:			EXAMINATION SCHEME:	CREDITS ALLOT	<u>TED:</u>			
Theory: 04			End Semester Examination(UE): 60 Marks	Credits: 04				
Pract	ical: 02		Internal Assessment(IA): 40 Marks					
Tutorial:			TW:25 Marks & Practical:25 Marks	Credit: 01				
			Total:150 Marks	Total Credits: 05				
Cour	rse Pre-	requisites	5:					
The s	students	should ha	we knowledge of					
1 Basics of Digital Logic Design.								
2	2 Basics of C programming							
3	Basic	of Microp	rocessor architecture.					
Cour	na Ohi	ootivoot						
1	To int	roduce the	operation of micro-controllers					
2	1 To introduce the operation of intero-controliers.							
<u> </u>	2 10 familiarize with the fundamentals of embedded system architecture, its basic bardware and software elements							
3	To une	derstand the	he concept of AVR Controller					
4	4 To introduce the AVR micro-controller with architecture and programming							
Cour	rse Out	comes:	After learning this course students v	will be able to				
1	Classify	y the memor	y devices, microcontrollers and their architect	ture.				
2 Write the programs for 8051 microcontroller using mathematical, logical, data flow instructions.								
3 Interface the external devices to 8051 microcontroller								
4 Understand the architecture of AVR microcontroller								
5 Implement the programs in C using AVR microcontroller								
6	Disting	uish differer	nt types of serial communication protocols					
UN	IT – I	Review	of Processor and Memory:		(08 Hours)			
		General-	purpose processors, single-purpose pro	ocessors, application				
		specific processors, CISC and RISC processor architecture,						
		memory	devices, processor and memory selecti	ion for an embedded				
		system,	interfacing processor, memory and I/	O devices, 8/16-bit				
		microco	ntrollers.					
	T T T	0.01.1.1			(00 **			
UN	1'I' – II	8 Bit Mi	(08 Hours)					

	MCS 51 family architecture: Registers in MCS-51, Parallel I/O ports, Timers & Counters, Memory Organization, Pin Description, Instruction set, Addressing modes, Interrupts in MCS-51, Programming	
UNIT- III	8051 Serial Communication &Interfacing of 8051	(08 Hours)
	Serial Communication of 8051: Basics, SBUF register, SCON and PCON registers, Modes of operation Simple program of serial communication. Interfacing of 8051 with devices: LED, LCD, keyboard, LM35 temperature sensor & A/D converter	
UNIT- IV	Introduction to AVR microcontroller	(08 Hours)
	Overview of AVR family, AVR Microcontroller architecture, status register, Special function registers, RAM, ROM & EEPROM space, On-Chip peripherals, ATmega32 pin configuration & function of each pin, Fuse bits of AVR.	
UNIT -V	AVR programming in C	(08 Hours)
	AVR Data types, AVR I/O port programming, Timer programming, Input capture and Wave Generator, PWM programming External Interrupt programming, ADC programming, EEPROM programming.	
UNIT- VI	Serial communication protocols	(08 Hours)
	UART protocol, I2C protocol, SPI protocol, Serial Port programming using polling and interrupt, I2C Programming, SPI Programming	
Town World		
<u>Term work</u>		
1.Additi	on / subtraction / multiplication / division of 8/16 bit data using 8051	
2. Large	st/smallest from a series using 8051.	
3.Genera	ate different waveforms: Sine, Square, Triangular, Ramp using DAC i	nterface.
4.To wri	te a C program to demonstrate LED using 8051 Micro-controller deve	elopment
kıt.	4 Commente la sector Commente de 19051 Misso	4
5.10 Wf1 developr	te a C program to demonstrate Seven Segment using 8051 Micro-con	troller
6.To wri	te a program to demonstrate Stepper Motor using 8051 Micro-control	ler
developr	nent kit.	
7.To wri	te a program to demonstrate LCD using 8051 Micro-controller develo	ppment kit.
		-
8.Installa	ation of AVR STUDIO and familiarization of ATMega32 AVR Devel	lopment
8.Installa Board.	ation of AVR STUDIO and familiarization of ATMega32 AVR Devel	lopment
8.Installa Board. 9.Steppe	ation of AVR STUDIO and familiarization of ATMega32 AVR Develor motor interfacing with ATMega32 in C with ATMega32.	lopment

- 11.Seven Segment Display interfacing with ATMega32 in C.
- 12. Timer to generate accurate delay using polling in C with ATMega32

13.16x2 LCD interfacing with ATMega32 in C.

15.Interfacing with ATMega32 in C using I2C protocol

16.On-chip ADC for interfacing analog sensors in C with ATMega32.

Textbooks:

- 1. Muhammad Ali Mazidi, Janice Gillespie Mazidi, "The 8051 Microcontroller and Embedded System" Pearson Education.
- 2. Dhananjay Gadre, "Programming and Customizing the AVR Microcontroller", McGraw Hill Education

Reference Books:

- 1. Kenneth J. Ayala, "The 8051 Micro-controller Architecture, Programming & Applications", Second Edition Penram International & Thomson Asia
- 2. Rajkamal, "Embedded System-Architecture, Programming and Design", TMH
- Publications, Edition 2003
- 3. Muhammad Ali Mazidi, Sarmad Naimi and Sepehr Naimi, "The AVR Microcontroller and Embedded Systems Using Assembly and C", Pearson Education

Project Based Learning:

Build the following circuits -

- 1. 8 Channel Quiz Buzzer Circuit using Microcontroller 8051/AVR
- 2. 8 Channel Quiz Buzzer Circuit using Microcontroller 8051/AVR
- 3. Automatic Railway Gate Controller with High Speed Alerting System using Micro-controller 8051/AVR
- 4. Bidirectional Visitor Counter using Microcontroller 8051/AVR
- 5. Celsius Scale Thermometer using Microcontroller 8051/AVR
- 6. Digital Tachometer using Microcontroller 8051/AVR
- 7. Density Based Traffic Signal System using Microcontroller 8051/AVR
- 8. Digital Temperature Sensor using Micro-controller 8051/AVR
- 9. Digital Voltmeter using Microcontroller 8051/AVR
- 10. Line Following Robotic Circuit using Microcontroller 8051/AVR
- 11. Password Based Door Lock System using Microcontroller 8051/AVR
- 12. RFID based Attendance System using Micro-controller 8051/AVR
- 13. Remote Control Circuit through RF using Microcontroller 8051/AVR
- 14. Street Lights that Glow on Detecting Vehicle Movement using Micro-controller 8051/AVR
- 15. Sun Tracking Solar Panel using Micro-controller 8051/AVR
- 16. Temperature Controlled DC Fan using Microcontroller 8051/AVR
- 17. Ultrasonic Rangefinder using Microcontroller 8051/AVR
- 18. Water Level Controller using Microcontroller 8051/AVR
- 19. Water Level Indicator using Micro-controller 8051/AVR
- 20. Temperature based Ceiling Fan Speed Control System (230V AC Motor) using Microcontroller 8051/AVR
- Students in a group of 3 to 4 shall complete any one project from the above list.

B. Tech. (Electronics & Communication Engineering) Sem IV EM WAVES AND PROPAGATION					
TEACHING SCHEME:		G	EXAMINATION SCHEME: CREI	DITS ALLO	TTED:
Theory: 04		-	End Semester Examination(UE): Credit	cs:04	
Dract	ical·		00 Marks		
Tuto	rial: 01	-	Credit	ts : 01	
1 400		-	Total: 100 Marks Total	Total Credits: 05	
Сош	rse Pre	e-requisite	s:		
The	Studen	ts should h	ave knowledge of		
1	Vecto	or calculus	and coordinate systems.		
2	Curl,	Divergenc	e and Gradient.		
3	Parti	al different	ial equations.		
Cour	rse Ob	jectives:			
1	Prov	ide fundam	entals of Static Electromagnetic Fields.		
2	Explain basics of the vector Differential, Integral operators to Electromagnetic theory &				
3	Electrostatic & Electromagnetic fields.				
4	Defir	ne and deri	ve different laws in Electrostatic & Electromagr	netic fields.	
5	Expla	ain Maxwe	ll's equations and concepts of transmission line	s.	
6	Analyze techniques for formulating and solving problems in Electrostatic &				
Cou	rse Ou	tcomes:	After learning this course students will be ab	ole to	
1	Com	prehend the	e fundamentals of Electrostatic and Electromag	netic fields	
2	Appl	y Gauss' la	aw, Ampere's Law, Biot-Savart law, Faraday's	law and laws	s related
	with fields		gnetic neid while solving problems in Electrosia	and Elect	tromagnetic
3	Deve	s. Ion field ea	quations from understanding of Maxwell's Equa	ations	
4	Exter	nd the know	wledge of basic properties of transmission lines	to analyze	
	Elect	romagnetic	c wave propagation in generic transmission line	geometries	
5	Dem	onstrate ma	athematical skills related with differential, integr	ral and vecto	or calculus.
6	Appl	y radiation	principles and concept of Antennas		
				1	
UNI	T – I	Static Ele	ectric Fields		(08 Hours)
	Review of Co-ordinate systems, Coulomb's law, line, Surface & Volume Charge distribution. Electric Field Intensity, Electric Field				

	due to infinite line and surface charges, Electric Flux Density, Gauss law (differential and integral form) and its applications, Divergence Theorem, Electric Potential and gradient, Poisson's and Laplace Equations, Work done, Energy Density, Electric Dipole and moment. Polarization in Dielectrics, Boundary conditions for Dielectric and Dielectric, boundary conditions for Conductor and Dielectric, boundary conditions for Conductor and free space	
UNIT –II	Static Magnetic Fields	(08 Hours)
	Biot – Savart's law, Magnetic Field Intensity due to infinite and finite line. Ampere's Circuital Law in integral and differential form, Applications of Amperes Circuital law, Magnetic flux density, Stokes Theorem, vector magnetic potential, Magnetic Torque, moment and dipole, nature of magnetic material, magnetization, Magnetic boundary conditions.	
UNIT - III	Time Varying Fields & Maxwell's Equations	
	Faradays law of induced Emf, displacement current, Maxwell's Equations in point form & Integral form for various fields.	(08 Hours)
UNIT - IV	Wave Propagation and Uniform Plane waves	(08 Hours)
	Wave equations, wave propagation through different medium, wave propagation through free space , wave propagation through dielectric, wave propagation through conductors- skin depth, Poynting theorem, wave polarization, Reflection of plane wave from conducting medium, perfect dielectric., reflection of plane waves at normal incidence, reflection of plane waves at oblique incidence angles.	
	Transmission LinesPhysical Description of Transmission line propagation, Transmission Line equations, Characteristic equation of infinite Transmission Line, Complex analysis of sinusoidal waves, Transmission lines equations & their solutions in phasor form, Uniform terminated 2 coefficient VSWR, smith chart (Numerical expected) and applications, transient analysis of transmission lines.	(08 Hours)
UNIT -VI	Waveguides & Antenna Fundamentals	(08 Hours)
	Plane wave analysis of parallel-plate waveguide, rectangular waveguides, TE and TM modes, wave impedance, wave velocities, attenuation in waveguide, EMI/EMC concepts, basic radiation principles, Hertzian dipole, magnetic dipole, thin wire antennas, antenna specifications, antenna arrays.	

List of Tutorials:
 Find the Electric field intensity and electric flux density at a given point due to following charge distributions. (In all coordinate systems) Point charges Line charges (finite and infinite) Surface charges (finite and infinite)
• Mixed charges (Point charge, Line charge, Surface charge)
 2. Application of Gauss's law Given ρv (volume charge density) in a particular region, find D (electric flux density) using Law at the given location. Given ρS(surface charge density), find D (electric flux density) using Gauss's Law a the given location. Given D (electric flux density), find total charge enclosed by the surface (Q), p (volume charge density) using Gauss's Law (In all coordinate systems)
 3. Find the electrostatic fields (Tangential and Normal) at the boundary between, Free space and dielectric medium Free space and conductor Dielectric medium and conductor Two dielectric media.
 4 Find H(Magnetic field intensity) and B(Magnetic flux density) at a given point de to, • Infinitely long current carrying conductor • Finite current carrying conductor • Infinite conducting surface • Finite conducting surface • Different current carrying configurations (i.e. thin conductor, surface all together)
 5 For the following current carrying configurations, find the H(Magnetic field intensity) in a given region (or point) using Ampere's circuital law. • Infinitely long current carrying conductor • Infinite cylindrical surfaces of different radii all centered at the same axis. • Spherical surfaces of different radii all centered at a given point.
6. Given \overline{H} (or \overline{E}) and the region properties (like ε , μ , σ etc.), find \overline{B} , \overline{D} and $\overline{E}(\overline{\mu}\overline{H})$ using Maxwell's equations. (In all coordinate systems).
7. Find attenuation constant, propagation constant, intrinsic impedance, values of E/H for different mediums like free space, conductors, and dielectrics.
8. Given the primary constants (R, L, G, C) along with the generator specifications and termination, find secondary constants (α , β , γ , Z0) and other parameters like Velocity, wavelength, received voltage, received power, reflection coefficient etc.
 9. Problems on Impedance matching and design of stub matching using Smith Chart. 10. Find cut-off frequency or waveguide dimensions or phase velocity for rectangular waveguides.
Text Books:
1 A Murthi "Flectromagnetic fields" S Chand
2. Edminister J.A. "Electromagnetics". Tata McGraw-Hill
Reference Books:

- 1. Hayt& Buck, "Engineering Electromagnetics", 7th Edition, Tata McGraw-Hill
- 2. Kraus, Fleisch, "Electromagnetics with applications", 5th Edition, McGraw Hill.
 - 3. Jordan & Balmain, "Electromagnetic waves & radiating systems", 2nd edition, PHI.
- 4. Matthew N.O. Sadiku, "Principles of Electromagnetics",6th edition, Oxford

Project Based Learning:

- 1. Plot Magnitude of a Vector & its Unit Vector MATLAB.
- 2. Simulate Coulomb Law on MATLAB & Scilab.
- 3. Plot different charge distributions viz. line charge, volume charge, surface charge in MATLAB.
- 4. Find & simulate Electric filed intensity & flux density for given charge distributions.
- 5. Verify & plot Divergence theorem with Gauss law in SCILAB & MATLAB.
- 6. Design a code in SCILAB for relation between E & V, Electric Dipole visualization and verify Poisson's & Laplace's Equations.
- 7. Design & Verify boundary conditions between Free space- conductor-Dielectric in SCILAB.
- 8. Simulate Biot-Savart's Law, Magnetic field intensity for different current distributions in SCILAB & MATLAB.
- 9. Design & Verify Magnetic boundary conditions in SCILAB
- 10. Visualize & Simulate Maxwell's Equations for Time varying Fields in MATLAB & SCILAB
- 11. Visualize EM waves & Uniform Plane waves formation in MATLAB
 - 12. Visualize & Simulate behavior of EM waves in good conductors Lossy-Lossless dielectrics in MATLB & SCILAB.
- 13. Find out Transmission line parameters for given frequency in SCILAB, Visualize how standing waves generated & reflected on Transmission line in MATLAB
- 14. Visualize & plot SWR Circle, Impedance Matching, and reflection coefficient input impedance on SMITH CHART in MATLAB.
- 15. Visualize & plot Stub Matching problem of Transmission lines SMITH CHART in MATLAB.

B. Tech. (Electronics & Communication Engineering) Sem IV INTEGRATED CIRCUITS AND AMPLIFIER DESIGN					
TEA SCH	CHIN FMF	<u>NG</u> '.	EXAMINATION SCHEME:	CREDITS ALL	OTTED:
Theory: 04		1	End Semester Examination(UE): 60 Marks	Credits: 04	
Practical: 02		02	Internal Assessment(IA): 40 Marks		
Tutorial:		-	TW:25 Marks & Practical :25Marks	Credit: 01	
			Total: 150 Marks	Total Credits: 05	
Cour	Da Da	o no cuicito			
The	se PI	e-requisites	Si ava knowladza of		
1 ne S	Kno	nts snouid na wiedge of k	CL and KVL Law		
2	Bas	ic knowledge	e of On-Amp and its configurations		
_	Dus	ie illio il leag			
Cour	se O	bjectives:			
1	Fan	niliar in the	operational amplifier principle- analysis-	design and applica	ntion.
2	Gain knowledge on the linear and nonlinear applications of operational amplifiers.				
3	Understand the theory and applications of Active filters and PLL.				
4	Familiar in the ADC- DAC and its classifications.				
5	Understand the few applications of specific ICs.				
Cour	se O	utcomes:	After learning this course students will	be able to	
1	Dif and	ferentiate IC l analyze ho ^v	c and Discrete components, understand m w monolithic components are being deve	anufacturing proce loped.	ess of IC
2	Ide	ntify differe	nt configurations of op-amp analyze the pupper response of operational amplifier	parameters of op-a	mp and
3	Un	derstand & o	lemonstrate different applications based (on operational-am	olifier
4	Un	derstand ana	log multiplier and PLL & demonstrate di	ifferent application	is based on
-	it				
5	Dif	ferentiate A	/D and $\overline{D/A}$ converter, understand their ty	pes and analyze the	neir
6	applications				
U	Del	monstrate th	e applications of waveform generators, th	mers and voltage i	egulators
UNIT	' – I	Basics of o	operational Amplifier		(08 Hours)
	Block diagram representation of a typical op-amp, Differential amplifier, Schematic symbol for op-amp, Definition of integrated				

circuits, Types of Integrated Circuits, Manufacturers, Designation for				
	IC, IC package types, PIN identification & temp ranges, Ordering			
	Reversal offset voltage compensation Frequency Personse of an			
	on-amp			
	op-amp.			
UNIT –II	Operational Amplifier – Linear circuits	(08 Hours)		
	Inverting amplifier, non-inverting amplifier, Voltage Follower, V- to-I and I-to-V converters, adder, subtractor, Integrator, Differentiator, peak detector, clipper and clamper, Instrumentation amplifier using 1, 2 and 3 op-amps, Instrumentation amplifier using transducer bridge.			
UNIT -III	Operational Amplifier - Non-linear circuits	(08 Hours)		
	Precision half wave rectifier & full wave rectifier, comparator, Schmitt trigger, window detector, log-antilog amplifier and its temperature compensation techniques, log ratio, sample and hold circuit.			
UNIT -IV	Active filters and waveform generators	(08 Hours)		
	First and second order low pass Butterworth filters, first and second order high pass Butterworth filter, Band pass filter, Band reject filter, All-pass filter, notch filter, Square wave, Triangular wave, Saw tooth wave generator and study of function generator IC 8038			
UNIT -V	Special function ICS	(08 Hours)		
	IC 555- as Monostable and Astable Multivibrators and its applications. IC 565- operating principle of Phase Locked Loop IC 565, Applications like Frequency multiplier, FSK and FM detector.			
UNIT -VI	Interfacing circuits	(08 Hours)		
V to I & I to V converter, D to A converter- Binary weighted resistors and R & 2R resistors, A to D Converter- Counter-ramp type, Successive approximation and Dual Slope.				
Torm We	nk.			
The term s	unit shall consist of record of minimum eight experiments			
	lesion and setup an inverting amplifier circuit with OP AMP 741C for a	gain of		
10.	, plot the waveforms, observe the phase reversal, measure the gain.	Duni OI		
2. To c	lemonstrate the use of op-amp as Integrator and Differentiator and draw	r frequency		
response.				
3. To c	lemonstrate the use of op-amp as precision rectifier.			
4. To c	lesign and setup a Schmitt trigger, plot the input output waveforms and	measure		

VUT and VLT.
5. Design and obtain the frequency response of second order Low Pass Filter (LPF) at a
high frequency of 1KHz.
6. Design and obtain the frequency response of High Pass Filter (HPF) at a cut off
frequency of 1KHz with pass band gain of 2.
7. To design and setup astable multivibrator using Op-amp 555, plot the waveforms and
measure the frequency of oscillation
8. To obtain the output of voltage comparator and zero crossing detector.
 Design instrumentation amplifier the with the help of three Op-amps inverting amplifier and also implement Wheatstone bridge and balance for null condition. (usingVLabs)
10. To design and study the frequency response of Summing Inverting Amplifier circuit.(usingVLabs)
11. Design and simulate triangular/square waveform generator using IC 741.(usingVabs)
12. To construct and study the voltage to current convertor.
13. To construct and study digital to analog converter circuit.
Text Books:
1. Ramakant A. Gayakwad, OP-AMP and Linear ICs, Prentice Hall of India, 4th Edition.2010.
2. K. R. Botkar, Integrated Circuits, khanna Publishers, 10th edition, 2010
Reference Books:
1. David A. Bell, "Operational Amplifiers and Linear ICs", Oxford
publication,3 rd edition,2011
2. Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits",
Tata McGraw Hill, 3rd edition, 2008
3. D.Roy Choudhry, Shail Jain, Linear Integrated Circuits, New Age International
Pvt.Ltd., 4th edition, 2010
Project Based Learning:
1. To design and setup a non-inverting amplifier circuit with OP AMP 741C for a gain of 10 plot the waveforms, observe the phase reversal measure the gain
2 To demonstrate the use of on-amp as clipper circuit
3 Designoperational amplifier 7/1 tester which test on-amp 7/1 either is good or fault
4. Design and simulate Temperature to Voltage Converter Circuit
4. Design and simulate remperature to voltage converter circuit.
6. IC 741 based circuit for dark Switch
7. Hertley and Colnitts oscillator using on amp
7. Hartley and Colpitis oscillator using op-amp
8. Noter Level based Alerm Circuit (using IC 555 ActableMultivibrator)
7. Water Level based Alarm Circuit (using iC 555- AstableMultiVibrator).
10. Digital Stop Watch
11. FIVI KAUIO USIIIg FLL. 12. ICI 7107 (A/D convertor) based Digital Veltraster
12. ICL/10/ (A/D convener) based Digital Voltmeter.
15. Diffiner circuit for LED Latip (using IC 555)
14. Electronic Letter Dox.
15. 4-line to 16-line decoder Circuit using /442

15. 4-line to 16-line decoder Circuit using 7442 Students in a group of 3 to 4 shall complete any one project from the above list.

B. Tech. (Electronics & Communication Engineering) Sem IV ITC-II:ESSENTIALS OF DATA SCIENCE					
TEA SCH	TEACHINGEXAMINATION SCHEME:CREDITS ALLOTTED:SCHEME:			TED:	
Theory: 03		End Semester Examination(UE): 60 Marks	Credits : 03		
Practical: Internal Assessment(IA): 40 Marks					
Tuto	rial:				
		Total:100 Marks	Total Credits: 03		
Cou	rse Pr	e-requisites:			
The S	Studen	ts should have knowledge of			
1	Pyth	on programming			
2	Prob	ability & Statistics			
Cou	rse Ob	jectives:			
1	Intro	duce R as a programming language			
2	Introduce the mathematical foundations required for data science				
3	Introduce the first level data science algorithms				
4	Introduce a data analytics problem solving framework				
5	Intro	duce a practical capstone case study			
0			••••		
	rse Ou	tcomes: After learning this course students	will be able to		
2	Class	ify data science problems into standard typology	(Comprehension)		
3	Deve	lon R codes for data science solutions (Applicat	ion)		
4	Corr	elate results to the solution approach followed (A	Analysis)		
5	Asse	ss the solution approach (Evaluation)			
6	Cons	truct use cases to validate approach and identify	modifications required	1	
	(Creating)				
UNI	UNIT – IIntroduction to Data Science(06Hours)				
Data Science Fundamentals: Data, Data Science Process, Components of Data Science, Data Scientist roles and responsibilities, Introduction to R and R Studio, Variables and Data types in R, Data frames, Recasting and Joining of Data frames, Arithmetic, Logical and Matrix Operations in R, Advanced Programming in R : Functions, Data Visualization in R Basic Graphics.					

UNIT - II	Linear Algebra & Statistical Modeling for Data Science	(06 Hours)
	Linear Algebra for Data science, Solving Linear Equations, Linear Algebra - Distance, hyperplanes and half spaces, Eigen values, Eigenvectors, Statistical Modeling, Random Variables and Probability Mass/Density Functions, Sample Statistics, descriptive statistics, notion of probability, distributions, mean, variance, covariance, Hypotheses Testing, Type 1 and Type 2 errors. Testing for parameters of a normal distribution and for percentages based on a single sample and based on two samples. Introduction to the chi- squared test. The concept of p-value. Mean-square estimation and Kalman filtering.	
UNIT -	Optimization for Data Science	(06 Hours)
	Optimization for Data Science, Unconstrained Multivariate Optimization Gradient (Steepest) Descent (OR) Learning Rule, Multivariate Optimization With Equality Constraints, Solving Data Analysis Problems.	10015)
UNIT - IV	Regression and Classification	(06 Hours)
	Predictive Modeling, Linear Regression, Model Assessment, Diagnostics to Improve Linear Model Fit, Simple Linear Regression Model Building and assessment, Multiple Linear Regression, The least squares error criterion. Relation to maximum likelihood, Analysis of Variance (ANOVA), Logistic Regression, Logistic Regression Implementation in R, Classification, Classification using logistic regression, K - Nearest Neighbors, K- Means Clustering, K - means Implementation in R, Dimension Reduction Techniques.	
UNIT –	Data Analysis and Visualization	(06
V	Pandas and Numpy, Operating on Data in Pandas, Data modeling and transforming, dealing with null values, different data types, preparing data for the model, Visualization with Matplotlib, Seaborn, Data visualization using Power BI.	Hours)
UNIT -	Machine Learning	
VI	in the second se	
	Introduction to Supervised and Unsupervised Learning, Clustering, Decision Trees, Random Forest, Time Series Forecasting: Introduction to Time Series, Correlation, Forecasting, Autoregressive models; Model Validation, Handling Unstructured Data, Neural networks, Support vector machine.	(06 Hours)
Tor-4 D		
Text Book	S:	

- 1. Practical Statistics for Data Scientists by Peter Bruce, Andrew Bruce, O'Reilly Publication.
- 2. Introduction to Machine Learning with Python: A Guide for Data Scientists by Andreas C. Mueller, Sarah Guido, O'Reilly Publication.

Reference Books:

- 1. Mohammed J. Zaki , Wagner Meira, "Data Mining and Machine Learning: Fundamental Concepts and Algorithms", Jr,1st Edition. Cambridge University Press
- 2. Trevor Hastie Robert Tibshirani, "The Elements of Statistical Learning: Data Mining, Inference, and Prediction", Second Edition Springer Series in Statistics
- 3. Garrett Grolemund and Hadley Wickham, "R for Data Science", O'Reilly Pub.

Project Based Learning:

- 1. Detecting Fake News with Python Dataset/Package: news.csv
- 2. Real-time Lane Line Detection in Python
- 3. Sentiment Analysis Project in Rwith Dataset/Package: janeaustenR
- 4. Build an application to detect colors with Beginner Data Science Project Color Detection with OpenCV
- 5. Build a chatbot using Python– Chatbot with NLTK &Keras
- 6. Design Gender and Age Detection with Data Sciencewith OpenCV
- 7. Design & buildMovie Recommendation System Project in R
- 8. Build an application for Customer Segmentation with Machine Learning(K-means Clustering) using R
- 9. Create a Spotify Music Analysis visualization using Python pandas

10. Create a Crypto currency Analysis visualization using Python pandas.

11. Build a Song recommendation model using Machine Learning.

12. Build a Book recommendation model using Machine Learning.

13. Uber Dataset Time Series Analysis / Uber Data Analysis in R

14. Implement an Email automation system using SQL & Python

15. Practically implement the Deep Learning Project with Source Code Handwritten Digit Recognition with CNN

B. Tech. (Electronics & Communication Engineering) Sem IV						
		DC	VOCATIONAL COURSE-I	I NTFNANCF		
TEA	TEACHING EXAMINATION SCHEME: CREDITS ALL OTTED:					
SCH	EME	<u>.</u>				
Theo	ry:		End Semester Examination(UE):			
Pract	ical: (02	Internal Assessment(IA):			
Tuto	rial:	-	TW:25 Marks & Oral :25 Marks	Credits: 01		
			Total: 50 Marks	Total Credits: 01		
Cour	rse Pr	e-requisites	5:			
The S	Stude	nts should h	ave knowledge of			
1	Basi	ic Electronic	·S			
0	0					
	rse Ol	bjectives:	and most for the forely in demonst	·	XX1. ····	
1	10 mac	identify a	and rectify the faults in domest wave oven Mixer Grinder and Electric	tettle	e wasning	
	mae		vive oven, mixel, officiel and Electric	Kettle.		
Сош	rse Oi	utcomes	After learning this course students w	ill be able to		
1	Iden	tifv and test	passive and active electronics componen	ts & study of Multim	eter	
2	Troi	ibleshoot the	faults in power supply circuits			
3	Iden	tifv and test	various mechanical and electrical module	es of the washing mad	chine.	
4	Iden	tify electron	ic parts/components/modules of the Micr	rowave oven.		
5	Iden	tify and rect	ify the faults in mixer and grinder.			
6	Iden	tify and recti	fy the faults in electric kettle.			
		r				
UNI	T –	Basic Elec	tronic components & Multi meter			
1		Different to	man of registers, consisters and inducto	m Maggumanant of		
		Different t	ypes of resistors, capacitors and inducto	CP meter Identify		
		the nower	rating of components. Dismantle and id	lentify the		
		different p	parts of a relay, basics of Transformer, Multimeter.			
		1	<u> </u>			
UNI	T –	Power sup	ply			
I	I					
		Testing of	active components, Practice soldering	g and de-soldering		
		techniques	Assemble and test-half wave, full wav	e & bridge rectifier		
		circuits Wi	and without liner, different types of equilator ICs(78/70 series). Construct	t a fixed voltage		
		regulator u	sing 78xx/79xx series ICs Variable vo	tage		
		regulator u	sing LM 723.	mugo		

UNIT -	Washing Machine		
III			
	Installation of front load washing machine Installation of top load		
	washing machine, Identify the internal and external parts of semi-		
	auto washing machine, identify the internal and external parts of fully		
	automatic washing machine, Operate semi-automatic washing		
	leading to not working of control panel switches. Rectify the fault		
	leading to not working of pulsator / agitator. Rectify the fault leading		
	to spin drier not working. Rectify the fault leading to one		
	side, rotation of motor. Rectify the fault leading to water inlet.		
UNIT -	Microwave oven		
IV			
	Internal and external parts of microwave oven. Identify the different		
	touch pad controls their functions, Testing of high voltage diode.		
	Identify the HV capacitor and discharge it. Rectify the fault leading		
	to fuse blows off when cooking is initiated, Rectify the fault leading		
	loading to doad set. Pactify the fault loading to long cooking time		
	Precautions importance of interlocking switch in performing		
	maintenance		
UNII -V	Mixer and Grinder		
	Dismantle and identification of various parts, wiring, tracing of		
	Various controls, Electronic circuits in various types of Mixors/grinders faults in various types of Mixors/grinders &		
	rectification		
UNIT -	Electric Kettle		
VI			
	Identify various components of Electric kettle, controls and trace the		
	circuit and rectify the simulated faults		
I =4 OD	- 42 1		
List of Pra			
Practical b	ased on maintenance of appliances should be conducted		
Text Rook	-c•		
1 Shac	bi Bhushan Sinha "Handbook of Repair and Maintenance of Domestic		
Fle	ctronics Appliances". January 2016. BPB Publications		
	enomes ripplanoos ,sundary 2010, DI D I doneations.		
Reference	Books:		
1. Micl	hael Jay Geier, "How to Diagnose and Fix Everything Electronic", Seco	nd	
Edi	Edition Mc Graw Hill education		

B. Tech. (Electronics & Communication Engineering) Sem IV JAVA PROGRAMMING					
TEA	CHING IEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:		
Theory:		End Semester Examination(UE):			
Prac	tical: 02	Internal Assessment(IA):			
Tutorial:		Oral: 25 Marks	Credits: 01		
		Total: 25 Marks	Total Credits: 01		
Cou	rse Pre-requisites:				
The	Students should ha	ve knowledge of			
1	Fundamentals of c	computing			
Cou	rse Objectives:				
1	To introduce obje	ct oriented programming concepts.			
2	To develop progra	amming ability by learning advanced co	oding techniques.		
Course Outcomes: After learning this course students will be able to					
1	Demonstrate basic knowledge of object oriented programming concepts.				
2	2 Write simple programs in Java.				
3	Get the knowledge	e of interfaces, packages and different f	the handing operations.		
4	Familiarize the co	ncept of exception handling.	•		
5	Conceptualize the	The sector of multithreading programm	ung.		
0	Apply Java for H	I ML and Applet applications.			
Tor	n Work.				
The	term work shall cou	sist of record of minimum eight exper-	ments		
The	1 Write a Java I	Program to demonstrate the use of OOF	P features		
	2. Write a Java I	Program to display pattern (Triangle, P	vramid) using different loops		
	3 Write a Java program to differentiate between method overloading and method				
overriding.					
	4. Implementation of different string functions by using switch case.				
	5. Write a Java p	program to understand the use of String	buffer class.		
	6. Write a Java I	Program implement multiple inheritanc	es by using Interface.		
	7. Write a Java p	program to implement the concept of pa	nckage.		
	8. Write a Java p	program to implement concept of Except	ption Handling.		
	9. Write a Java Program to perform different file operations.				

- 10. Write a program to implement multithreading.
- 11. Write a program to implement Frame and different graphics objects.
- 12. Write a program to implement Java Applet.

Text Books:

- 1. E Balagurusamy, "Programming with Java: A Primer, 3E", Tata McGraw Hill Publishing Company.
- 2. Herbert Schildt, "Java Complete Reference", McGraw Hill Publishing Company
- 3. Deitel and Deitel, "Java: How to Program", Deitel pub.

Reference Books:

1. Ivan Bayross, "Web Enabled Commercial Applications Development Using HTML, DHTML, JavaScript, Perl – CGI", BPB Publication.

B. Tech. (Electronics & Communication Engineering) Sem IV LINUX PROGRAMMING					
TEACHING SCHEME:		EXAMINATION SCHEME:	CREDITS ALLOTTED:		
Theo	ry:	End Semester Examination(UE): -	-		
Pract	ical: 02	Internal Assessment(IA):			
Tuto	rial:	TW:25 Marks	Credits:01		
		Total: 25 Marks	Total Credits: 01		
Сош	rse Pre-reaui	sites:			
The	Students shou	ld have knowledge of			
1	Computation	nal C			
-	Computation				
Cou	rse Objective	S:			
1	Make a She	ll script executable. To demonstrate the	use of constraints and relational		
	algebra oper	rations.			
2	Execute pro	grams written in C under UNIX environ	nment		
3	To use the f	ollowing Bourne Shell commands: cat, g	grep, ls, more, ps, chmod, finger,		
4	Itp, etc. 10	a machanisms (for debugging), user ver	ichlag Dourna Shall variablag		
4	Learn tracing mechanisms (for debugging), user variables, Bourne Shell variables,				
	command substitution, comments				
Cou	rse Outcomes	s: After learning this course student	s will be able to		
1	To demonst using Linux	rate the basic knowledge of Linux comm shell environment	nands and file handling utilities by		
2	To evaluate	the concept of shell scripting programs	by using an AWK and SED		
	commands.				
3	To create th	e directory, how to change and remove t	the directory.		
4	To analyze	the process of how the parent and child	relationships		
5	To understa	nd the concept of client-server commun	ication by using sockets.		
6	Discuss she	Il programming in Linux operating syste	em		
Experiment List					
1	•				
a) Study of U	nix/Linux general purpose utility comm	and listman, who, cat, cd, cp, ps, ls,		
	mv, rm, mł	dir, rmdir, echo, more, date, time, kill, l	history, chmod, chown, finger,		
	pwd, cal, lo	ogout, shutdown.			
b	b) Study of vi editor.				
c	c) Study of Bash shell, Bourne shell and C shell in Unix/Linux operating system.				
d) Study of U	nix/Linux file system (tree structure).			

e) Study of .bashrc, /etc/bashrc and Environment variables.				
2. Write a C program that makes a copy of a file using standard I/O, and system calls				
3. Write a C program to emulate the UNIX ls –l command.				
4. Write a C program that illustrates how to execute two commands concurrently with a				
command pipe.				
5. Ex: $- ls - l sort$				
6. Write a C program that illustrates two processes communicating using shared memory				
7. Write C program to create a thread using pthreads library and let it run its function.				
8. Write a C program to illustrate concurrent execution of threads using pthreads library.				
9. Write a shell script that accept a file name starting and ending line numbers as				
arguments and display all the lines between given line no: Write a shell script that				
delete all lines containing a specified word				
10. Write a shell script that displays a list of all the files in the current directory; Write a				
shell script that receives any number of file names as arguments checks if every				
argument supplied is a file or a directory and reports accordingly. whenever the				
argument is a file or directory.				
11. Write a java script to find the number of characters, words and lines in a file? linked				
list respectively. Write a C Program that makes a copy of a file using standard I/O and				
system calls? Implement in C the following Unix commands using system calls A) cat				
B)mv				
12. Write a C program that illustrates how an orphan is created; Write a program that				
illustrates how to execute two commands concurrently with a command pipe.? Write				
C programs that illustrate communication between two unrelated processes using				
named pipe.				
13. Write a client and server programs (using c) for interaction between server and client				
processes using Internet Domain sockets? Write a program to implement the shared				
memory. Write a client and server programs (using c)for interaction between server				
and client processes using Internet Domain sockets? . Write a C program that				
illustrates two processes.				
Text Books:				
1. Cristopher Negus, "Red Hat Linux Bibl"e, Wiley Dreamtech India 2005 edition.				
2. Yeswant Kanethkar, "UNIX Shell Programming", First edition, BPB.				
Reference Books:				
I. Robert Love," Linux System Programming", O'Reilly, SPD.				
2. W.R.Stevens," Advanced Programming in the Unix environment", 2nd Edition,				
Pearson Education.				
3. W.R.Stevens, "Unix Network Programming", PHI.				
4. Graham Glass, King Ables, "Unix for programmers and users", 3rd Edition,				
Pearson Education.				

Pearson Education.

B. Tech. (Electronics & Communication Engineering) Sem II INTEGRAL TRANSFORMS AND VECTOR CALCULUS						
TEACHING		G	EXAMINATION SCHEME:	CREDITS ALLOTTED:		
<u>SCH</u>	EME			<u> </u>		
Theory: 04			End Semester Examination(UE): 60 Marks	Credits : 04		
Pract	Practical:		Internal Assessment(IA): 40 Marks			
Tutorial: 01				Credit : 01		
			Total Marks: 100 Marks	Total Credits: 05		
Court						
Cour	se Pro	e-requisites	S:			
The s	tuden	Idents should have knowledge of				
2	Four	grals.				
3	Vec	urier series.				
5	• • • •	tor argeora.				
Cour	se Ob	jectives:				
1	Met	hods to solv	ve differential equations			
2	Vari	ous technic	ues of integral transform.			
3	line,	surface and	d volume integrals.			
Cour	se Ou	tcomes:	After learning this course students will	be able to		
1	Imple	ement the n	nethods for first order first degree different	tial equation.		
2	Unde	erstand the	modeling of physical systems and find the	solutions.		
3	Solve	e the nth or	der linear differential equation.			
4	Compute the integral transform for various functions.					
5	Apply the Laplace transform for solving differential equations					
6	Understand vector calculus and apply it to evaluate line, surface and volume integrals.					
UNIT – I		Differential Equation			(08 Hours)	
		Formation of the ordinary differential equations(ODEs), Solution of an ordinary differential equation, Equations of the first order and first degree, Linear differential equation, Bernoulli's equation, Exact differential equations, Equations reducible to exact equations,				
TINITO					(00	
UNIT – II		Applications of Differential Equation		(08 Hours)		
		Applications of DE to Orthogonal Trajectories, Newton's Law of Cooling, Kirchoff's Law of Electrical Circuits, Motion under				

	Gravity, Rectilinear Motion, Simple Harmonic Motion, One-				
	Dimensional Conduction of Heat.				
UNIT - III	Linear Differential Equations	(08 Hours)			
	Solution of nth order LDE with Constant Coefficients, Method of Variation of Parameters, Cauchy's &Legendre's DE, Solution of Simultaneous & Symmetric Simultaneous DE, Modeling of Electrical Circuits.				
UNIT - IV	Z-transform	(08 Hours)			
	Fourier Transform (FT) : Complex Exponential Form of Fourier series, Fourier Integral Theorem, Sine & Cosine Integrals, Fourier Transform, Fourier Sine and Cosine Transform and their Inverses. Introductory Z-Transform (ZT) : Definition, Standard Properties, ZT of Standard Sequences and their Inverses. Solution of Simple Difference Equations.				
UNIT -V	-V Laplace Transform				
	Definition of LT, Inverse LT. Properties & theorems. LT of standard functions. LT of some special functions viz., Periodic, Unit Step, Unit Impulse, ramp, jump, . Problems on finding LT & inverse LT. Applications of LT and Inverse LT for solving ordinary differential equations.				
UNIT -	Vector Calculus	(08			
VI		Hours)			
	Physical Interpretation of Vector Differentiation, Vector Differential Operator, Gradient, Divergence and Curl, Directional Derivative, Solenoidal, Irrotational and Conservative Fields, Scalar Potential, Vector Identities. Line, Surface and Volume integrals, Work-done, Green's Lemma, Gauss's Divergence Theorem, Stoke's Theorem, Applications to Problems in Electro-Magnetic Fields.				
Text Book	s:				
2. P. N Pur	. Wartikar and J. N. Wartikar, "Applied Mathematics (Volumes I and II ne Vidyarthi Griha Prakashan, Pune, 2013.)", 7 th Ed.,			
Reference	s Books:				
1. B. S. Grewal, "Higher Engineering Mathematics", 42 th Ed., Khanna Publication, Delhi					
 B.V. Ramana, "Higher Engineering Mathematics", 6th Ed., Tata McGraw-Hill, New Delhi, 2008. 					
 Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Ed., John Wiley & Sons, Inc., 2015. 					

4. Peter V. O'Neil, "Advanced Engineering Mathematics", 7 th Ed., Cengage Learning, 2012.					
5. Michael Greenberg, "Advanced Engineering Mathematics", 2 nd Ed., Pearson Education, 1998.					
Project based learning:					
1. Formation of differential equations					
2. Evaluate the electric circuit problem using differential equations					
3. Evaluate the heat conduction in 1-D using differential equations					
4. Evaluate the rectilinear motion problem using differential equations					
5. Evaluate the simple harmonic problem using differential equations					
6. Obtain the solution of Simultaneous & Symmetric Simultaneous DE					
7. Obtain the solution of Simple Difference Equations using Z-transforms					
8. Find the Directional Derivatives					
9. Find work done using Green's theorem					
10. Find scalar potential using vectors					
11. Evaluating integrals using Green's theorem, Gauss's and stoke's theorem					
12. Use Laplace transform to solve differential equations					
13. Use Laplace transform to solve integrals equations					
14. Use Fourier transform to solve integrals					
15. Applications of vector integration to solve problems in Electro-Magnetic Fields.					
16. Find the conditions for Solenoidal and irrotational vector fields					