"Social Transformation through Dynamic Education"

Bharati Vidyapeeth (Deemed to be University), Pune

YASHWANTRAO MOHITE COLLEGE OF ARTS, SCIENCE & COMMERCE

Erandwane, Pune-411038

M.Sc. Microbiology Syllabus As per NEP 2020

(To Be Implemented From Academic Year 2023-24)

M. Sc. Microbiology Part I Semester I

MJMB 101: IMMUNOLOGY Total: 4 Credits; Workload: 15h /Credit

(Total Workload: 4 Credits x 15 h = 60 h in Semester)

Course Outcomes:

- 1. Understand classes of immunoglobulin, organization and expression of immunoglobulin genes.
- 2. Know details of major histocompatibility complex and disease susceptibility.
- 3. Understand cytokines and their medical significance.
- 4. Understand hypersensitivity reactions.
- 5. Know immune deficiencies and auto immunity.
- 6. Understand details of transplantation immunology and immunity to cancer.

	Topics in Details	Lecture
Module		Hours
Ι	Immunoglobulins	12
	a. Fine Structure of immunoglobulins, classes & biological activities	
	b. Organization & expression of immunoglobulin genes.	
	c. Variable region gene rearrangements	
	d. Generation of Antibody diversity	
	e. Expression of Ig Genes, Regulation of Ig - Gene transcription.	
	f. Antibody genes and antibody engineering	
II	Major Histocompatibility Complex	12
	a. General Organization and Inheritance of the MHC	
	b. MHC molecules and Genes	
	c. Detailed Genomic Map of MHC genes	
	d. Cellular Distribution of MHC molecules	
	e. Regulation of MHC Expression.	
	f. MHC and Immune Responsiveness	
	g. MHC and Disease susceptibility	
III	Immune Effector Mechanisms	12
	a. Cytokines - properties, receptors, antagonists, cytokine secretion, related	
	diseases, therapeutic uses.	
	b. Complement system - functions, components, activation, regulation,	
	biological consequences, deficiencies.	
	c. Cell adhesion, cell signaling through GPCR and signal transduction	
	pathway, mediators of inflammation, inflammatory process, anti-	
	inflammatory agents.	
	d. Hypersensitive reactions – Type I, Type II, Type III and Type IV	
IV	Immunodeficiency, Autoimmunity & AIDS	12
	a. Primary immunodeficiency : Agammaglobunaemia, X- linked, Common	
	Variable immunodeficiency (CVID)	

	b. Acquired or Secondary Immunodeficiency-Down's syndrome, AIDS,	
	Hodgkin's disease	
	c. Organ Specific autoimmune diseases - Insulin Dependent Diabetes	
	d. Systemic Autoimmune diseases - Rheumatoid Arthritis	
	e. Treatment of Autoimmune Diseases.	
V	Cancer & the Immune System, Transplantation Immunology	12
	Cancer & the Immune System	
	a. Cancer origin & Terminology	
	b. Malignant transformation of cells	
	c. Oncogenes & cancer induction.	
	d. Tumors of the immune system	
	e. Tumor antigens.	
	f. Immune response to tumors.	
	g. Tumor evasion of the immune system	
	h. Cancer immunotherapy.	
	Transplantation Immunology	
	a. Immunologic Basics of Graft Rejection.	
	b. Clinical manifestation of Graft rejection	
	c. General Immunosuppressive Therapy	
	d. Specific Immunosuppressive Therapy	
	e. Clinical Transplantation	

- 1. Cruse J and R. Lewis (2004) Atlas of Immunology 2ndEdn. CRC Press.
- 2. David Male, Jonathan Brostoff, David B Roth, Ivan Roitt.(2006).Immunology 7th edition.
- 3. R.A. Kindt T.S. and B.A. Osborne Kuby(2000) Immunology Fourth Edition W.H. Freeman & Co New York.
- 4. Reed R; Holmes D; Weyers J and A Jones (1998) Practical skills in Biomolecular Sciences Adison Wesley Longman Ltd.
- 5. Tizard ; I.R. (1995) Immunology an Introduction 4thEdn. Saunders College Publishing. Harcourt Brace College Publishers.
 - Students are supposed to refer to "Current Contents" and periodicals for recent & additional information.

MJMB 102: GENETICS OF PROKARYOTES AND EUKARYOTES

Total: 4 Credits; Workload: 15h /Credit

(Total Workload: 4 Credits x 15 h = 60 h in Semester)

Course Outcomes:

- 1. Understand structure of chromosomes in prokaryotes and eukaryotes
- 2. Understand concept of gene expression and regulation in prokaryotes and eukaryotes
- 3. Understand the process of gene transfer in bacteria , genetic recombination and its significance
- 4. Understand the Mendelian Principles of Inheritance and Population Genetics

	Topics in Details	Lecture
Module		Hours
I	Organization of Genetic material	15
	a. Prokaryotic genome organization and its variability, DNA replication	
	modes & models of DNA replication - theta & rolling circle,	
	Mutagenesis - Mutagens (physical, chemical & biological agents),	
	Mutations – types and phenotypic consequences, Conditionally	
	expressed mutations, Isolation and detection of mutants, Estimation of	
	mutation rate, mutational equilibrium.	
	b. Eukaryotic Chromosome Organization, DNA replication &	
	recombination, Chromatin modelling. Euchromatin and	
	heterochromatin, Histone modifications & its effects, C-value paradox,	
	Rot & Cot concept, Pseudogenes, Repetitive DNA, Satellite DNA,	
	giant DNA Molecules- polytene & lamp brush , Split genes,	
	Overlapping genes. Effect of antibiotics (quinolones and imidazoles) on	
	DNA and its replication.	
II	Gene Expression and its regulation	15
	a. Evolution of the one gene one polypeptide concept.	
	b. Transcription and its regulation in prokaryotes and eukaryotes ,	
	prokaryotic and eukaryotic RNA polymerases, transcription unit and	
	transcription process, structure of mRNA molecules in Prokaryotes and	
	Eukaryotes, transcription of other genes- ribosomal RNA and	
	ribosomes, transfer RNA. Positive and negative regulation of	
	transcription-, operons, Positive regulation - Maltose operon in E. coli,	
	Histidine operon in Salmonella, role of attenuators, anti-termination,	
	Post transcriptional RNA processing in eukaryotes.	
	c. Prokaryotic and eukaryotic translation, components in translation	
	process, Shine-Dalgarano sequences, Kozak sequence, initiation factors,	
	elongation factors , translocation of ribosomes , termination of	
	translation and release factors, Concept of protein sorting, chaperons, ,	
	post translational modification, fidelity of translation.	
III	Genetic Recombination in Bacteria	15
	a. Bacterial Transformation	
	Discovery of Transformation, Process and molecular mechanism of	
	Natural Transformation in Gram positive and Gram negative bacteria.	
	Significance of Transformation, Artificial Transformation, regulation of	
	transformation in Bacillus subtilis, gene mapping using transformation.	
	Transfection.	

	 b. Bacterial Conjugation F⁺ cells, properties of F⁺ cells, cross between F⁺ and F⁻ cells Transfer of plasmid DNA, Stages in transfer process, tra genes of F, Host 	
	restriction in transfer, Formation of Hfr cells. Hfr Transfer: Cross between Hfr and F-, Chromosome transfer mediated by F' Plasmid (F-	
	 duction), gene mapping by conjugation, Conjugation in <i>Streptococcus faecalis</i> system, Conjugation in <i>E. coli</i> system. c. Bacterial Transduction 	
	Generalized Transduction Generalized Transduction, Specialized Transduction, Formation of specialized transducing particles from a λ lysogen, Specialized transduction of a nonlysogen, High frequency transducing phages, Specialized transducing phage as a cloning vehicle, Transduction and phage conversion, gene mapping using transduction	
IV	Extension of Mendelian Principles of Inheritance and Population Genetics	15
	 A. Principles of Mendelian inheritance and its extensions, Incomplete dominance, co-dominance, epistasis, sex linked inheritance with atleast one example b. Difference in genotype frequencies amongst population. Hardy – Weinberg principle, Random mating, Polymorphic genes, Inbreeding, Introduction of new alleles in population, Natural selection, Random changes in allele frequency. 	

- 1. Alberts. B.; Johnson. A, Lewis J. Raff, M. Roberts. K. and P. Walter (2002) Molecular Biology of the cell 4th Edition. Garland Science, Taylor & Francis Group.
- 2. Elliott. W.H. and D.C. Elliot (2001) Biochemistry and molecular Biology. 2ndEdn. OxfordUniversity Press.
- 3. Gardner E.J., Simmons, M.J and D.P. Snustad. (1991) Principles of Genetics. 8th Edition. John Willey & Sons. Inc.
- 4. Hartl. D.L. and E.W. Jones. (1999) Essential Genetics. Second Edition. Jones and Bartlett Publisher.
- Kleinsmith L.J. and V.M. Kish. (1995). Principles of Cell and molecular Biology 2ndEdn. Haper Collins. College Publishers.
- 6. Lewin B. (2004) Genes VIII International Edition. Pearson. Prentice Hall. Pearson Education International.
- 7. Lewin. B. (2000) Genes VII. Oxford University Press.
- Pierce. B. A, (2005) Genetics A Conceptual Approach.2ndEdition.W.H.Freeman and Company,New York
- Primrose. S.B. and R.M. Twyman and R.W. Old (2003). Principles of Gene Manipulation. 6thEdn. Blackwell Science.
- 10. Russel P. (1998) Genetics Fifth edition. Addison. Wesley Longman Inc.

MJMB103: PRACTICAL COURSE I (Based on MJMB101 & CCCMB-101)

Total: 2 Credits; Workload: 30 hours / Credits

(Total Workload: 2 Credits x 30 hours = 60 hours in Semester)

Course Outcomes:

At the end of this course the students will be able to:

- 1. Perform various diagnostic tests using immunological principles
- 2. Identify blood group and select donor
- 3. Select and apply statistical methods for data analysis
- 4. Use excel tool for statistical analysis and generation of graphs and charts

Module	Practicals	No. of Practical
		Hrs
	Immunology	
	a. Blood grouping and Cross matching	
	b. Study of Single Radial Immunodiffusion (SRID)	
Ι	c. Study of Ouchterlony Double Diffusion	30
	d. Purification of antibody fraction by ammonium suphate method	
	e. Immunoelectrophoresis	
	f. RA test	
	g. ASO test	
	h. CRP test	
	i. Weil Felix Test	
	j. ELISA– DOT	
	Biostatistics	
	a. Measures of central tendency - mean, median & mode	
	b. Measures of dispersion – Variance & standard deviation	30
	c. Estimation of confidence interval for a normal distribution	
	d. Correlation analysis	
	e. Plotting of histograms and frequency polygons	
II	f. ANOVA – CRD,RBD	
	g. F-test	
	h. T-test	
	i. r^2 test	
	j. Use of excel tool for generating graphs and charts	

- 1. Handbook of Practical Immunology (Vol.1, 2 & 3) by D.M.Weir
- 2. Practical Microbiology by R.C.Dubey and D.K.Maheshwari . S.Chand & Co.
- 3. Advanced techniques in Diagnostic Microbiology by Tang and Charls W
- 4. T. Bhaskararao (2002) Methods of Biostatistics. Paras Publishing.
- 5. Wardlaw A.C. (1985) Practical statistics for experimental Biologists John Wiley & Sons. Ltd.

MJMB104: PRACTICAL COURSE II (Based on MJMB102)

Total: 2 Credits; Workload: 30 hours / Credits

(Total Workload: 2 Credits x 30 hours = 60 hours in Semester)

Course Outcomes:

At the end of this course the students will be able to:

- 1. Perform isolation of genomic DNA, plasmid DNA, RNA from the bacteria and yeast cells
- 2. Characterization and estimation of DNA and RNA
- 3. Study the process of transformation and conjugation in bacteria
- 4. Study some basic techniques in genetics and molecular biology

Module	Practicals	No.	of
		Practical	
		Hrs	
	 a. Staining of nuclear material of bacteria and yeast by feulgen / Giemsa method b. Isolation of companie DNA from bacteria and exact. 		
т	b. Isolation of genomic DNA from bacteria and yeast	20	
Ι	c. Isolation of plasmid DNA from bacteria.d. Characterization of DNA by gel Electrophoresis	30	
	e. Quantitative estimation of DNA by using diphenylamine method		
	f. Recombination in bacteria – Preparation of competent cells and		
	transformation of plasmid DNA in <i>E. coli</i> .		
	g. Curing of bacterial Plasmid using different agents		
	a. Conjugation in bacteria.		
II	b. Isolation of bacterial / yeast RNA	30	
	c. Estimation of RNA by Orcinol method		
	d. Thermal denaturation of DNA		
	e. Determination of mutation rate - Natural and Induced		
	f. Southern blotting (demonstration)		
	g. PCR (demonstration)		
	h. Protoplast fusion in bacteria (demonstration)		

- 1. Practical Microbiology by R C Dubey and D K Maheshwari. S.Chand and Co.
- 2. Laboratory Manual in Biochemistry by J.jayraman , New Age International Publication
- 3. Experimental Microbiology by R.J.Patel, Aditya Publishers, Ahmadabad
- 4. Environmental Science and Biotechnology : Theory and Techniques by A.G.Murugesan And C Rajkumari, MJP Publishers.

ELMB-101A: MICROBIAL ECOLOGY AND ENVIRONMENTAL MICROBIOLOGY Total: 4 Credits; Workload: 15h /Credit

(Total Workload: 4 Credits x 15 h = 60 h in Semester)

Course Outcomes:

- 1. Understand microbial ecology with respect to microbial evolution , biodiversity and its significance
- 2. Study the microbial forms in an extreme environment and their applications
- 3. Understand the concept of Bioleaching and Bioremediation with respect to heavy and toxic metals
- 4. Study the concept, mechanisms and applications of quorum sensing and biofilm formation
- 5. Understand the characteristics and management of industrial waste management

6. Module	Topic in Detail	Lecture Hours
	Microbial Ecology a.Microbial evolution and biodiversity: Biodiversity concept, Alpha and Beta	
	biodiversity, Steps to preserve biodiversity, diversity indices (Shannon and Simpson's index).	
	b.Genetic basis for evolution and Ribosomal RNA analysis for tracing microbial evolution	
Ι	c.Biodiversity conservation and Species conservation	15
	d.Microbial communities and ecosystem	
	Development of microbial communities, Succession within microbial communities, Diversity and stability within microbial communities, Risk of introducing genetically modified microorganisms,	
	e.Quantitative ecology: Sample collection, Sample processing, Detection of microbial	
	populations, Determination of microbial numbers, Measurement of microbial metabolisms	
	f. Bioresource and uses of biodiversity	
	Microbial life in extreme environment:	
	Abiotic limitations to microbial growth.	
II	Diversity, adaptations, molecular mechanisms and potential applications of	15
	extremophilic bacteria – methanotrophs, oligotrophs, thermophiles, psychrophiles,	
	metallophiles, acidophiles, alkaliphiles, halophiles and organic solvent and radiation	
	tolerant	
III	Bioleaching and Bioremediation	
	1. Bioleaching a. Microbial assimilation of metals	
	b. Bioleaching of metals - Gold, Uranium, Copper.	
	c. Metal and metallic transformation- Mercury, Arsenic, Lead.	
	d. Recovery of petroleum	
	2. Bioremediation of Metals	15
	a. Metal toxicity effect on microbes	
	b. Mechanisms of microbial resistance to metals, metal -microbe interactions	
	c. Microbial remediation of metal contaminated soils	
	d. Microbial remediation of metal contaminated aquatic systems	

	e. Bioremediation of oil and petroleum products	
	f. Bioremediation of waste gases	
V	1. Quorum Sensing - Stages , mechanism, AHI, AIP, AI. Quorum Sensing in	
	gram positive and gram negative bacteria, QS inhibitors, QS applications.	
	2. Biofilms	15
	a. Population, physiology, morphology and biochemistry of microbial biofilms	
	b. Mechanism of cell adhesion and roles of different adhesion molecules	
	c. Beneficial and harmful aspects of biofilms.	
	d. Fouling Biofilms	
	e. Control of Biofilms	
	3. Industrial Waste Management	
	a. General characteristics of liquid wastes of industries - pH, electrical conductivity,	
	COD, BOD, total solids, total dissolved solids, total suspended solids, total volatile	
	solids, chlorides, sulphates, oil & grease.	
	b. Characteristics of waste and effluents, environmental impact and, treatment of	
	distillery industry, food industry, dairy industry, beverage industry, dye industry,	
	textile industry, pharmaceutical industry.	

- 1. Asthana D.K. and M. Asthana (2003) Environment Problems & Solutions. S. Chand and Co. Ltd. New Delhi.
- Bathra Atlas (2007) Microbial Ecology Fundamentals and Application, 4th edition, Pearson Education Publication
- 3. De. A.K. (1994) Environmental Chemistry, New Age International (P) Limited, Publishers.
- 4. Gray. N.F. (2000) Water Technology. An Introduction for Environmental Scientists and Engineers. Viva Books Pvt. Ltd. New Delhi.
- 5. Jadhav H.V. (1992) Elements of Environmental Chemistry. Himalaya Publishing House.
- 6. Kormondy E J. (2007) Concepts in Ecology,4th edition, Pearson Education Publication
- 7. MooreJ.W. and E.A. Moore (1976) Environmental Chemistry Academic Press, New York.
- 8. Rao. C.S. (1991) Environmental pollution control Engineering Wiley Eastern Limited New Delhi. Bangalore, Bombay, Calculta, Guwahati, Hyderabad, Lukknow Madra & Pune.
- 9. Rittman B.E. and P.L. Mc Garty. (2001) Environmental Biotechnology. Principles & Applications. McGraw Hill International Editions. Biological Sciences Series.
- 10. Santra. S.C. (2001_ Environmental Science, New Central Book Agency (P) Ltd.
- 11. Sharma B.K. and H. Kaur (1994). Water pollution Goel Publishing House Meerut.
- 12. Subbarao N.S., Soil Microbiology Fourth Edition of Soil Micro-organisms and plant growth. Published by Raju Primlani for oxford and JBH Publishing. Co. Pvt. New Delhi.

ELMB 101B: BIOSTASTISTICS AND BIOINFORMATICS

Total: 4 Credits; Workload: 15h /Credit

(Total Workload: 4 Credits x 15 h = 60 h in Semester)

Course Outcomes:

- 1. Know concepts in Bioinformatics
- 2. Understand computing tools in bioinformatics
- 3. Explore websites and biological databases
- 4. Select and apply statistical methods for data analysis.

Module	A. Bioinformatics. A. Biostatistics	Lecture
		Hours
Ι	 a. Collection, Classification and presentation of Data: Primary and secondary data, methods of collecting primary data, Sources of secondary data, Precautions in the use of secondary data. Organization of data, Classification, Frequency distribution, Basic principles for forming a grouped frequency distribution, Cumulative frequency distribution, Bivariate frequency distribution, table, graphs and charts. b. Correlation Analysis: Introduction, Methods of studying correlation, Scatter diagram method, Karl Pearson's method of correlation (covariance method), Probable error, Correlation in bivariate frequency table, Rank correlation method, Method of concurrent deviations, Coefficient of determination, Lag and lead correlation. c. Regression analysis: Linear and nonlinear regression, Lines of Regression, Coefficient of regression, mean value of the two lines of regression, Standard error, Regression equations for a bivariate frequency table, 	15
	Correlation analysis vs Regression analysis	
II	 a. Measures of Central Tendency and Dispersion, Probability distribution (Poison, Binomial and Normal), Hypothesis testing. b. Statistical Tests: Z-test, T-test, ANOVA, chi squared test, F test. 	15
	B. Bioinformatics	
ш	 a. Overview, History and Scope of Bioinformatics, Bioinformatics websites, data types and source. Types of databases in bioinformatics - primary, secondary and composite, Submission and Retrieval of entry from database. b. Retrieval of biological data Entrez and DBGET/Link DB, SRS c. Nucleotide sequence databases, analysis and identification. GeneBank, NCBI, EMBL Nucleotide sequence databank, DNA Data Bank of Japan (DDBJ), PubMed, PDB Examples of related tools (FASTA, BLAST, BLAT, RASMOL) d. Relation of bioinformatics with molecular biology , cloning vectors, concept of maps, physical maps, shotgun libraries, DNA polymorphism e.g. the Human Genome Project e. Protein sequence databases: NCBI Protein, EMBL Protein, PIRPSD, SwissProt 	15

	Bioinformatics Tools	
	a. Sequence similarity searches -FASTA and BLAST, Sequence Filters.	
	b. Amino acid substitution matrices. Protein structure visualization and	
	prediction, Structural Databases- PDB, SCOP, Molecular visualization	
	tools- RasMol, Cn3D, SPDBV, Interactive database searches and PSI –	
IV	BLAST	
	c. Multiple sequence alignment- gene and protein families and pattern	15
	databases. Multiple sequence alignment (MSA) and family	
	d. Application of MSA in phylogenetics - taxonomic analysis of	
	microorganisms, graphical forms - Rooted, Unrooted, Cladogram,	
	Dendrogram, Phylogram, Phenogram.	
	Application of Bioinformatics in various fields: agriculture, molecular	
	medicine.	

- 1. Bergeron. B. (2003). Bioinformatics Computing. Prentice Hall Inc. Eastern Economy Edition.
- 2. Bailey N.T.J (1995) Statistical Methods in biology 3rd Edition. Cambridge lowprice Edition Cambridge university press.
- 3. Dixit J.V. (1996) Principles & Practice of Biostactistics 1st Edn. M/s. Banarasidas Bhanot (Publisher).
- 4. Dwyer. R.A. (2003) Genomic Perl. From Bioinformatics Basics to working code. Cambridge University Press.
- 5. Simpson R.J. (2004) Purifying Proteins for Proteomics. A laboratory Manual. Cold spring Harbor laboratory press.
- 6. Westhead. D.R., Parish J.H and R.M. Twyman (2003) Instant notes in 'Bioinformatics' Viva Books Private Ltd.
- 7. T. Bhaskararao (2002) Methods of Biostatistics. Paras Publishing.
- 8. Wardlaw A.C. (1985) Practical statistics for experimental Biologists John Wiley & Sons. Ltd.
- 9. Reed R, Holmes; D; Weyers. J & A. Jones (1998) Practical skills in Biomolecular sciences. Adison Wesley Longman Ltd. Pg. 251 268, 303 323.
- * Students are supposed to refer to "Current Contents" and periodicals for recent & additional information.

ELMB 101C: BIOCHEMISTRY

Total: 4 Credits; Workload: 15h /Credit

(Total Workload: 4 Credits x 15 h = 60 h in Semester)

Course Outcomes:

- 1. Understand basic concepts in biochemistry.
- 2. Understand structural features and chemistry of macromolecules.
- 3. Know membrane transport mechanism in bacteria.

Module	Topics in Detail	Lecture Hours
	Basic concepts in Biochemistry	nours
Ι	 Common organic compounds found in living system Common functional groups in biochemistry. OH, CHO, C = 0, NH2, C – NH2, SH, ester, ethers, methyl, ethyl, phospho, guanidio, imidazole etc). Common ring structures in biochemistry, Isomerism, Isotopes, Energetics, Redox systems, High energy compounds. Structural Features and Chemistry of Macromolecules Nucleic acids: Tautomeric forms of bases and their implication in pairing of bases. Structure of polynucleotides, DNA structure, DNA and RNA (t -RNA, r-RNA, m-RNA etc). Structure of DNA double helix. R and L handed forms. A, B, C and Z forms of DNA. 	15
Π	 Denaturation and Renaturation of DNA and Tm value. Proteins Amino acids. Peptides – Prepeptide linkage, partial double bond nature of peptide linkage. Proteins – structural classification of Proteins, primary structure, secondary structure, tertiary structure, Quarternary structure. Determination of primary structure of polypeptide (N terminal determination, C terminal determination, Partial hydrolysis, Overlapping sequence etc), helix of polypeptide. Structure and functions of globular proteins. Immunological techniques to investigate proteins. Artificial synthesis of polypeptides. 	15
ш	 Carbohydrates L forms and D forms of sugar. Reducing and non reducing sugars. Aldoses / ketoses. Alpha and Beta, ring forms of sugars. Glycosidic linkages. Sugar derivatives – sugar alcohol, amino sugars, dextro sugars, sugar acids Polysaccharides (starch, glycogen, cellulose) 	15

	 Lipids Fatty acids – Types and nomenclature. Saturated and unsaturated fatty acids, Structure and function of Triglycerides, Phospholipids, Sphingolipids. Structure and function of steroids, terpenes, prostaglandins. 	
IV	 Membrane Transport Overview of membrane transport. ATP powered pumps and intracellular ionic environment. Non gated Ion channels and the resting membrane potential. Co-transport – symport, antiport. Neurotransmitters. ATP driven active transport system for Sodium and Potassium ions. Proton gradient in Halobacteria. Transport of antibiotics that increase the ionic permeability of membranes 	15

- a. Doelle, H.W. (1975) Bacterial Metabolism 2nd Edition Academic Press, Inc. N.Y.
- b. Jayraman Laboratory manual in Biochemistry, New Age International publishers, New Delhi.
- c. Lehninger A.L. (1984): Principles of Biochemistry, 1st Indian Edition, LBS publishers and distributors Pvt. Ltd. New Delhi.
- d. Lehninger A.L.(2000) Principles of Biochemistry II Edition by D.KL. Nelson and
- e. M.M. Cox Mcmillan Worth Pub. Inc. N.Y.
- f. Mehler H.R. (1968) Basic biological chemistry, Harper and Row publisher, Inc. New York.
- g. Murray R.K., Harper's Biochemistry, Appleton and Lange Stanford, 25th Edition.
- h. D. Plummer, J. Wiley & Sons Introduction to practrical Biochemistry by W.H. Freeman & Company publishers, SanFrancisco
- i. Stryer, W.H. Freeman (1992) Biochemistry IV Edition and Co. N.Y.
- j. Tood, H.S. Mason, J.T.V. Burger (1966). Text book of biochemistry, 4th Edition west
- k. E.S.W. R MacMillan Company, New York
- West E.S., W.R. Todd, H.S. Mason. J.T.V. Burgger (1966) Text book of biochemistry, 4th Edition, MacMillan, New York.
- m. White A., P. Handler. E.L. Smith (1973) Principles of Biochemistry, 5th Edition.
- n. Wilson K. and J. Walker, (1999) Cambridge University Press. Principles and techniques at Practical biochemistry

ELMB-101A: PRACTICAL COURSE III (Based on ELMB101A)

Total: 2 Credits; Workload: 30 hours / Credits

(Total Workload: 2 Credits x 30 hours = 60 hours in Semester)

Course Outcomes:

- 1. Able to isolate the extremophiles from natural habitats
- 2. Able to carry out analysis of waste water of different industries
- 3. Understand the isolation of pesticide degrading and biosurfectant producing organisms from natural habitats.
- 4. Study the biofilm formation by organisms
- 5. Perform bioleaching of heavy metals
- 6. Study quantitative ecology

Module	Practical	No. of
		Practicals Hrs
	Isolation and study of Indigenous Extremophiles :	
	Sample Collection, Processing and Isolation, Morphological	
	Characterization and Identification by Biochemical tests (Using Bergey's	
	Manual)	30
Ι	a. Thermophiles	
	b. Acidophiles	
	c. Alkalophiles	
	d. Halophiles	
	e. Psychrophiles	
	1. Waste Water Analysis :	
	a. Determination of TS, TSS & TDS	
	b. Determination of BOD and COD of a given sample	
II	2. Isolation of pesticide degrading bacteria, demonstrating determining	30
	efficiency using colorimetric assay	
	3. Isolating biosurfactant producing bacteria and demonstration of bio	
	surfactant activity	
	4. Bacterial Biofilm formation detection by Crystal violet staining assay	
	5. Bioassay for determination of quorum sensing signals produced by	
	bacteria.	
	6. Bioleaching of metals from waste	
	7. Determination of heavy metals (Fe/Cu) by spectrophotometric	
	methods.	
	8. Quantitative Ecology: Biodiversity estimation, calculating diversity Indices	

CCCMB-101: RESEARCH METHODOLOGY Total: 4 Credits; Workload: 15h /Credit

(Total Workload: 4 Credits x 15 h = 60 h in Semester)

Course Outcomes:

- 1. Understand concept of research
- 2. Design a research proposal
- 3. Know presentation skills and scientific writing.
- 4. Select tool and analyze research data

Module	Topics in Detail	Lectures
		Hours
Ι	 a. Foundation of Research : Definition, meaning, characteristics of scientific research, types of research, nature of qualitative and quantitative research, Process of Research, Formulation of Research Design, types of research designs, meaning and sources of research problem, characteristics of good research problem, Formulation of Research Problem – Introduction, Review of Literature, Objectives, hypothesis, scope, limitations etc. b. Biostatistics Introduction to statistics - Basic terms, population, sample , variable, parameter, Measures of central tendency- mean, median & mode, Frequency distribution, Measures of dispersion – range, variation , coefficient of variation, Probability & Distribution – Bernoulli, Binomial, Poisson and normal distributions. c. Collection of Data: Primary and secondary data, methods of collecting primary data, drafting or framing the questionnaire, sources of secondary data, d. Classification and Tabulation: Organization of data, Classification, Frequency distribution, Basic principles for forming a grouped frequency distribution, Cumulative frequency distribution, Bivariate frequency distribution, Tabulation - meaning and importance e. Graphical Representation of Data: Difference between diagrams and graphs, Diagrammatic representation, Graphic representation of data, Limitations of diagrams and graphs, Construction and interpretation of a histogram. 	12
Π	 a. Correlation Analysis: Methods of studying correlation, scatter diagram method. b. Linear Regression Analysis: Linear and nonlinear regression, Lines of Regression, Coefficient of regression, mean value from two lines of regression, regression coefficients and the correlation coefficient from the two lines of regression ,Standard error of an estimate, Regression equations for a bivariate frequency table, Correlation analysis vs Regression analysis c. Handling Proportion data: Examples of proportion data (MPN, Sterility testing of medicines, animal toxicity, therapeutic trials of drug and vaccines, infection and immunization studies e. g LD50, ED50, PD50 Statistical treatment of proportion data, Chi-Square test, goodness of fit to 	12

normal distribution d. Handling Count data:	
Ta Handling Colint data.	
Examples of count data Bacterial Cell count, radioactivity count, col	ony and
plaque count etc. Statistical treatment to count data: Poison dist	•
standard error, confidence limits of count.	noution,
e. Analysis of variance: Introduction, procedure, F & T test.	
e. Analysis of variance: infroduction, procedure, F & T test.	
III Scientific Writing	
a. General aspects:	
Organizing time, Organizing information and ideas e.g. writing – adoptin	g
a scientific style, Developing technique, Getting started, Revising your te	xt with
the help of words and phrases, sentences, paragraphs, using dictionaries,	using a
thesaurus, using guides for written English.	
b. Review and literature survey writing:	
Selecting a topic, making a plan to construct possible content, construction	on of an 12
outline, scanning the literature and organizing references.	
Introduction, main body of the text, conclusion, References, Style of liter	ature
Surveys, reviewing your write-up	
d. Writing research paper:	
Title, Authors and address, Abstract, Key words, Introduction, Mater	
Methods, Results & Discussion (IMRAD), Conclusions, Acknowledge	gements,
Literature cited (Bibliography)	
IV a. Reporting practical and project work:	
Practical & project reports, Thesis Structure of reports of experiment	works -
Title, Authors & their institution, Abstract Summary, List of C	Contents.
Abbreviations, Introduction, Materials and Methods Results Disc	
conclusions, Acknowledgements, Literature cited (Bibliography)	
Production of a practical report, steps - choose the experiment, make u	ip plans,
write, Revise, prepare final version. Submit Producing a Scientifi	
Assessing potential content, choosing a journal, writing, sub	
Responding to referees comments, checking proofs & waiting for public	cation.
b. Organizing a poster display:	12
Preliminaries, Design, Layout, Title Text, Sub titles and headings,	Colour
Content. Introduction, Materials and Methods, Results and conclus	sion, the
poster session.	
a Civing on oral presentation.	
c. Giving an oral presentation:	
C. Giving an oral presentation: Preparation - Preliminary information, Audio - Visual aids, Audience.	Content -
Preparation - Preliminary information, Audio - Visual aids, Audience.	
Preparation - Preliminary information, Audio - Visual aids, Audience. C Introductory remarks, the main message. Concluding remarks on presen	tation
 Preparation - Preliminary information, Audio - Visual aids, Audience. Of Introductory remarks, the main message. Concluding remarks on present d. Ethics in Research: 	tation ngiarism,
 Preparation - Preliminary information, Audio - Visual aids, Audience. On Introductory remarks, the main message. Concluding remarks on present d. Ethics in Research: Plagiarism- Definition, different forms, consequences, unintentional placopyright infringement, collaborative work. Qualities of good researche 	tation ngiarism,
Preparation - Preliminary information, Audio - Visual aids, Audience. O Introductory remarks, the main message. Concluding remarks on presend. Ethics in Research: Plagiarism- Definition, different forms, consequences, unintentional pla copyright infringement, collaborative work. Qualities of good researcheVIntroduction to Bioinformatics ,ICT tools in Research and IPR	tation ngiarism, r.
 Preparation - Preliminary information, Audio - Visual aids, Audience. On Introductory remarks, the main message. Concluding remarks on present d. Ethics in Research: Plagiarism- Definition, different forms, consequences, unintentional placopyright infringement, collaborative work. Qualities of good researche 	tation ngiarism, r.

ENTREZ, Databases, Database search - Data mining, Data management and	
interpretation, literature database. BLAST, sequence alignment, protein	
modeling, protein structure analysis, docking, genomics and proteomics.	12
b. Excel Spreadsheet Tool : Application, using formulas and functions, features	
for statistical data analysis, generating charts / graph and other features.	
c. Software tools like EViews, MATLAB, and Minitab.	
d. Understanding major indexing databases like Scopus, Web of Science,	
INFLIBNET. Concept of impact factor of Journals, citation, citation index and	
h-index etc.	
e. IPR – Introduction, Nature, Patents, Designs, Trademarks, Copyright, Process	
of Patent and Development, Technological Research and Innovation.	

- 1. Day Robert A.: How to write and publish a scientific paper.
- 2. Gibaldi Joseph: MLA handbook for Writers of Research Papers.
- 3. Kothari R. C.: Research Methodology, Methods and Techniques, 2nd revised edition, New Age International.
- 4. Ranjit Kumar: Research Methodology.
- 5. Reed, R. Homes, D; Weyers, J. and A. Jones. Practical skills in Bimolecular Sciences. Addison Wesley Longman Limited
- 6. Bailey N.T.J (1995) Statistical Methods in biology 3rd Edition. Cambridge low price Edition Cambridge university press.
- 7. Baxevanis A. D. and B.F. F. Ouellette, Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins.
- 8. Campbell R.C. : Statistics for Biologists, Cambridge University Press.
- 9. Day Robert A. : How to write and publish a scientific paper.
