Bharati Vidyapeeth

(Deemed to be University) Faculty of Engineering and Technology Programme: B. Tech. (Chemical) (2021 Course) Amended Curriculum Structure

B. Tech. (Chemical) semester VII and VIII Curriculum Syllabus

Bharati Vidyapeeth (Deemed to be University) Faculty of Engineering and Technology Semester – VII CBCS 2021 Course

Teaching Scheme Examination Scheme (Marks) Credits (Hours/week) Sr. Course Name of Course Р No. Code L P/D Т UE IA TW OR Total L Т PR Total Elective – I 2 40 25 25 150 5 1 4 60 4 1 ---Process Chemical Equipment 2 5 2 4 -60 40 25 25 150 4 1 --Design and Drawing Chemical Process Control and 3 4 2 40 25 150 4 5 60 25 1 ---Automation Plant Utility and Process Safety* 4 4 -60 40 -100 4 4 -----5 25 50 Chemical Process Simulation- I 2 25 -1 1 ------6 Project: Stage-I 50 50 100 2 2 -2 ------25 50 7 Internship 25 3 3 --------175 750 16 25 Total 16 10 240 160 125 25 9 --

* Industry Taught Course V

Program: B. Tech. (Chemical)

Sr. No.	Course Code	Name of Course		hing Sch ours/wee			Exan	nination	Scheme (M	larks)			Credi	ts	
			L	P/D	Т	UE	IA	TW	OR	PR	Total	L	Р	Т	Total
8	ADD-on	MOOC-III	-	-	-	-	-	-	-	-	-	-	-		2

Sr.	Course Code	Name of Course	Teaching Scheme (Hours/week)		Examination Scheme (Marks)					Credits					
No.			L	P/D	Т	UE	IA	TW	OR	PR	Total	L	Р	Т	Total
1		Elective – II	4	2	-	60	40	25	25	-	150	4	1	-	5
2		Chemical Project Engineering and Economics	4	2	-	60	40	25	25	-	150	4	1	-	5
3		Optimization Techniques in Chemical Engineering	4	-	-	60	40	-	-	-	100	4	-		4
4		Industrial Management*	4	-	-	60	40	-	-	-	100	4	-	-	4
5		Chemical Process Simulation- II	-	2	-	-	-	25	25	-	50	-	1	-	1
7		Project: Stage-II	-	4	-	-	-	100	100	-	200	-	6	-	6
Total			16	10	-	240	160	175	175	-	750	16	9	-	25

Program: B. Tech. (Chemical)

Semester – VIII CBCS 2021 Course

* Industry Taught Course VI

Sr. No.	Course Code	Name of Course		hing Scł ours/wee			Exan	nination (Scheme (M	(arks)			Credit	ts	
			L	P/D	Т	UE	IA	TW	OR	PR	Total	L	Р	Т	Total
8	ADD-on	Social Activities- II	-	-	-	-	-	-	-	-	-	-	-		2

Programme: B. Tech Chemical (2021)

Semester- VII (Chemical)

ELECTIVE-I: POLYMER TECHNOLOGY

Designation: Elective

Pre-requisite Courses: Basic chemistry, Physical chemistry, Chemical Reaction Engineering, Chemical Engineering Thermodynamics

Teaching	Scheme	Examination Scheme		Credits Allot	ted			
Lectures	: 4 Hours/Week	End Semester Examination	: 60 Marks	Theory	: 04			
Practical	: 2 Hour /Week	Continuous Assessment	: 40 Marks	TW/Practical	: 01			
		Term-work (TW)	: 50 Marks	Tutorial	:			
		Total	: 150 Marks	Total credits	: 05			
Course O	outcomes:							
		tudents would be able to:						
	1	ers and their classifications						
		plain various polymer properties and the their effect on engineering properties						
	termine suitable process for polymer synthesis and describe its mechanism							
4 Aı	nalyze polymer charact	eristics and discuss its effect of	on properties					
5 Ex	plain the formation of	composites and blends in poly	ymers					
6 Ex	plain the methods of polymer compounding and processing							
		Topics covered						
UNIT-I	Introduction to pol	lymers			(08 Hours			
	Introduction, pol		omopolymers-he	1 2 7				
	monomers as bu	ilding block of polymer	rs, historical	development,				
	classifications of p	olymers and polymerization	reactions, chair	n growth and				
	step growth polym	erization, mechanism of poly	ymerization, po	lymer liquids				
	and polymer solids							
UNIT-II	Polymer properties				(08 Hours			
	0	f polymers (Mw, Mn, Mv), N	0					
	determination of molecular weights, polymer morphology, polymer structure –							
		linear, branched and crosslinked, presence of functionality, chemical bonding						
		isomerism, effect these facto	ors on chemical	, thermal and				
	mechanical properti	- · ·						
UNIT-III					(08 Hours			
	Polymerization to							
		their merits and demerits, ki						
	radical chain polymerization, cationic polymerization, anionic polymerization,							
	1	o-polymerization and its kinet						
		ation, continuous emulsion	polymerization,	Ziegler-Natta				
	catalyst				(08 Hours			
UNIT-IV	·	and effect on properties						
		metrical structure of polymo						
	based on chemical	structure, microstructure bas	sed on geometr	ical structure,				

UNIT	Glass transition temperature, factors influencing glass transition – molecular weight, plasticisers, copolymer concentration, and their effect on polymer properties; crystallinity, effect of presence of crystallinity on polymer	
UNIT	properties; crystallinity, effect of presence of crystallinity on polymer	
UNIT		
UNIT		
UNII	properties V Delement composite and blands	(00 II
		(08 Hours)
	Difference between blends and composites, their significance, choice of	
	polymers for blending, blend miscibility-miscible and immiscible blends,	
	thermodynamics, phase morphology, polymer alloys, polymer eutectics,	
	plastic-plastic, rubber-plastic and rubber-rubber blends, FRP, particulate, long	
TINITT	and short fibre reinforced composites.	(00 II)
UNIT		(08 Hours)
	Polymer compounding-need and significance, different compounding	
	ingredients for rubber and plastics, crosslinking and vulcanization. Methods of	
	processing: Compression moulding, transfer moulding, injection moulding,	
	blow moulding, reaction injection moulding, extrusion, pultrusion, calendaring,	
	rotational moulding, thermoforming, rubber processing in two-roll mill,	
	internal mixer.	
m • T		
	Books/References:	
	Billmeyer F. W.: Text book for Polymer Science, John Wiley and Sons, USA, 2004	T • • 1
2	Gowarikar V. R., Viswanathan N. V., Shreedhar J.: Polymer Science, Wiley Easter	ern Limited,
	Singapore, 1986	
3	Odion G. G.: Principles of Polymerizations; Odion G. G.; John Wiley and Sons, USA,	2004
4	Ram A.: Fundamentals of Polymer Engineering, Springer USA, 1997	
	Rubinstein M., Colby R. H.: Polymer Physics, 1 st Ed. OUP UK, 2003	
6	Mark J. E.: The Polymer data Handbook, 3 rd . Ed., Oxford University Press, UK 2009	
•	et based learning: Below is the list of possible topics, which is for guidance faculty can	n design and
	e relevant topics in addition to these	
1	Define the properties and qualities required in a material to be used as monomer. Prepa	are a report
	on the monomers and their effect on the polymerization.	
2	Prepare a report on preparation of polymer, its property assessment and optimization to	owards
	desired application	
3	Investigate the property modification and its effects on the applicability. Define and dis	scuss the
	methodology for polymer property modification and its effects on applicability	
4	Consider different applications and design the polymer as material for the system, design	gn and
	property modification of the polymer towards applicability of the same.	
5	Develop the synthetic system and its kinetics for different polymeric systems to	
	controlling parameters and factors controlling polymer synthesis. Prepare a report on the	
6	Define the factors and parameters affecting the selection of polymerization reactor and	define their
	controls based upon the polymer in hand	
7	Prepare a report on the formation of Ziegler Natta catalyst and its effect on polyme	rization and
	property attenuation.	
8	Design the system for the synthesis of polymers by Emulsion polymerization and	d define the
	controlling parameters based upon the Smith Ewartz kinetics	
9	Defining the methodology towards property modification and write a report on t	the property
	modification through blending or composite formation, material selection and	
	methodology towards desired application.	
10	Prepare a report on moulding and shaping of the polymer material and strategies for the	e desired
	application.	

Syllabus for	Unit Test•	
Unit Test	: I	Units : I, II, and III
Unit Test	: II	UNIT : IV, V, and VI

ELECTIVE-I : PETROLEUM REFINERY ENGINEERING

Designation: Professional Core

Pre-requisite Courses: Basic knowledge of Chemical Process Industry, Mass Transfer

Teaching S	cheme	Examination Scheme	Credits Allotted		
Lectures	: 04Hours/Week	End Semester Examination	: 60 Marks	Theory	: 04
Practical	: 02Hours/Week	Internal Assessment	: 40 Marks	Tutorial	: -
Total	: 06 Hours/Week	Term-work (TW)	: 25 Marks	Practical	:01
		Practical/Oral	: 25 Marks	Total Credits	: 05
		Total	: 150Marks		

Course Outcomes

- 1 Know the composition of crude oil and its products, along with its properties and characterization methods.
- 2 Demonstrate knowledge of petroleum products, quality control and understand processing of crude oil.
- 3 Understand the thermal and catalytic cracking process.

4 Learn the process of catalytic reforming, Hydrotreating and Hydrocracking.

- 5 Get conversant with the process of purification and fractionation of crude oil.
- 6 Analyze theoretical and practice skills in environmental issues of petroleum refinery.

Topics Covered

UNIT-I	Introduction Introduction to petroleum refinery; Classification of Crude oil; Characterization of crude oil; Composition of crude Physical properties: Crude oil; analysis and distillation; Introduction to refinery "feedstock/s" and refinery products; ASTM nomenclature (ASTM test numbers and their meaning) Introduction to various codes required for petroleum industry.	(08 Hours)
UNIT-II	Evaluation of crude oil properties and Design of crude oil distillation column Dehydration and desalting of crude; Crude Assay ASTM TBP distillations evaluation of crude oil properties; API gravity various average boiling points and mid percent curves; Evaluation of properties of crude oil and its fractions; Design concept of crude oil distillation column design.	(08 Hours)
UNIT-III	Thermal and Catalytic cracking Coking and thermal process; delayed coking; Catalytic cracking; cracking reactions; cracking feedstock; Effect of process; FCC cracking; catalyst; New designs for fluidized bed catalytic cracking.	(08 Hours)
UNIT-IV	Catalytic Reforming Objective and application of catalytic reforming; process reforming Catalysts; Reformer feed; reforming reactor design; continuous and semi regenerative process; Hydrotreating and Hydrocracking reactions.	(08 Hours)
UNIT-V	Isomerization, Alkylation and Polymerization	(08 Hours)

		Isomerization process, Reactions; Effects of process variables; Alkylation process; Feedstock, reactions, products, catalysts and effect of process variables; Polymerization: Objectives, process, Reactions, catalysts and effect of process variables; Visbreaking
UN	IT-VI	EnvironmentalissuesandNewTrendsinpetroleum(08 Hours)refinery operationsEcologicalconsiderationinpetroleumrefinery;Wastewatertreatment;control of air pollution;Newtrendsinrefinery;Alternativeenergysources;Safetyaspectsinpetroleumindustrysourcesinsourcessources
Pro	ject Bas	ed Learning
1	Write	a report on petroleum refining and energy demand in current year.
2		ver the methods used to create clean and reformulated fuels
3		te the use of catalysts in petroleum refining
4		te refinery CAPEX and OPEX
5		ower point presentation on vertical integration in petroleum industry
6		ng on different areas of study in upstream, midstream and downstream industry.
7		ze worldwide distribution of oil and gas reserves in current year.
8		stand basic procedures and role of all fundamental systems used in petroleum drilling
9	engine	
10	Specify column	y materials for construction and estimate the cost of investments for crude pil distillation n.
11		a technical report on your visit to a petroleum refinery.
12	Give j industr	power point presentation on knowledge of safety and pollution control in the refining ries.
13	Group	discussion on the recent advances in petroleum refinery processes.
14		a complete chart of operations involved in petroleum industry.
15		the economic environment of the petroleum industry.
*Stı	idents in	a group of 3 to 4 shall complete any one project from the above list.
	m Work	
		will consist of the seminars on the following topics.
$\frac{1}{2}$		atalyst used in petroleum industry.
2		method used in reforming.
3		Pengtool for the petroleum calculations.
4		ical considerations in petroleum industry.
5 6		ence between petroleum and petrochemical industry.
6 7		X and OPEX in refinery. codes used in petroleum industry.
/	Colour	codes used in petroleum industry.
Te1	-	s/References
1		haskar Rao, "Modern Petroleum Refining Processes", 2ndEd., Oxford and IBH publishing t. Ltd., New Delhi 1990.
2		Edmister, "Applied Hydrocarbon Thermodynamics", Gulf Publishing, Houstan, Texas, 1961.
3		nar, "Gas Production Engineering", Gulf publishing Co., 1987.
4		ham, Moody, "Petroleum exploration hand book" McGraw-Hill Inc., US, 1961

5		M.D.Lorenz, "Standard Handbook of petroleum and Natural	Gas						
	Engineering" 3 nd Edition. Gulf Profession, 2016								
6	W.L. Nelson, "Petroleum Refinery Engineering", McGraw Hill, 1964.								
Sylla	bus for Unit Tests								
Unit	Test I	Units I, II, and III							
Unit	Test II	Units IV, V, and VI							

Elective-I: Advanced Oxidation Processes

Designation: Professional Elective

Pre-requisite Courses: Waste water treatment and Engineering Chemistry

Teaching Set	cheme	Examination Scheme	Credits Allotted		
Lectures	: 04Hours/Week	End Semester Examination	: 60 Marks	Theory	: 04
Practical	: 02Hours/Week	Internal Assessment	: 40 Marks	Term-work	: 00
Total	: 06 Hours/Week	Term-work (TW)	: 25 Marks	Practical/Oral	: 01
		Practical/Oral	: 25 Marks	Total Credits	: 05
		Total	: 150 Marks		

Course Outcomes

- 1 Demonstrate basics of advanced oxidation processes (AOPs)
- 2 Apply the method of ozonation and photon induced AOPs
- 3 Learn the method of heterogeneous photo-catalysis and its mechanism
- 4 Understand the method of homogeneous and heterogeneous Fenton processes and its mechanism
- 5 Analyse various emerging AOPs and their mechanism
- 6 Describe the industrial applications of AOPs

Topics Covered

Conventional waste water treatment processes, Fundamentals and background	8 Hours)
1 0	
of AOPs for water and wastewater treatment, basic reaction mechanism of	
AOPs, Role of hydroxyl radicals and their generation, Reaction kinetics and	
degradation mechanisms of organic pollutants by hydroxyl radicals, Effects of	
process parameters and scavenging media on degradation efficiency,	
oxidation potential of AOPs, merits and demerits of various AOPs	
UNIT-II Ozonation and Photo induced AOPs (08	8 Hours)
Ozonation: background and fundamentals, reaction kinetics and mechanisms,	
Application of homogeneous and heterogeneous catalytic ozonation in water	
treatment; Fundamentals of UV irradiation: Absorption and bond dissociation	
energy, UV sources and their characteristics, Choice of photo source–used in	
AOPs; Photo induced AOPs: Mechanism of photo induced AOPs Oxidation	
using ultraviolet irradiation and hydrogen peroxide (UV/H ₂ O ₂), oxidation	
using ultraviolet irradiation and ozone (UV/Ozone), oxidation using	
combination of ultraviolet irradiation, hydrogen peroxide and ozone (UV/	
H_2O_2 /Ozone).	
UNIT-III Heterogeneous Photo-Catalysis (08	8 Hours)
Fundamentals of semiconductor photo-catalysis: various semiconductor	,
particles used in photocatalytic applications, visible light driven photo-	
catalysts, photocatalytic reactions and kinetic studies and introduction to nano	
photo-catalysis; Photocatalytic reactors: solar energy driven or artificial light	
photo reactors, solar collectors, design of slurry or supported catalyst reactors,	
comparing reactor efficiencies and reuse of catalyst.	
	8 Hours)
Fenton process; photo-Fenton process; advanced Fenton process; the	,
mechanism of Fenton based processes; merits and demerits of homogeneous	

		and heterogeneous Fenton processes.		
UNIT-V		Emerging AOPs		
		Electrochemical oxidation; Ultrasound processes; principles of sonochemistry and acoustic cavitation; ultrasound cavitation and its combination with other		
		AOPs; synergistic and antagonistic effects; hydrodynamic cavitation and its		
		combination with other AOPs.		
UN	T-VI	Industrial applications of AOPs	(08 Hours)	
		Application of AOPs for industries such as textile, petroleum, pharmaceutical, petrochemical industry etc.; Decontamination of ground water; Cost or economic analysis of various AOPs.	(,	
Proj	ject Bas	ed Learning		
1.	Prepar	ation of technical report based on industrial applications of advanced oxidation p	rocesses	
2.	Prepar	ation of power point presentation based on recent trends in photocatalysis		
3.	_	project on the application of ultraviolet irradiation and hydrogen peroxide for the ation of dyes	e	
4.	Study	any three recent research papers related to advanced oxidation processes and prepoint presentation.	pare/present	
5.	1	discussions on any of the following topics:		
	-	Merits and demerits of various AOPs		
	b)	Ozonation and Photo induced AOPs		
6.	Detern	nine the ultrasonic power density of given ultrasonic processor		
7.	Visit to	o nearby waste water treatment plant and a prepare a detail report.		
8.	Detern	nine the hydraulic characteristics of any cavitating device		
9.	Prepar	e a technical report on recent trends in waste water treatment by hydrodynamic c	avitation	
10.	Indust	rial case study - Application of AOPs in textile/ petroleum/ pharmaceutical indus	try	
Ter	n Work	5		
Terr	n work v	will consist of the Seminar:		
	Semina	ar should be based on recent advances in AOPs. Students may undertake studies	in water and	
	waste	water treatment using AOPs. Design and scale-up aspects can be studied in detail	l. Term work	
	should	be based on the technical report on these studies carried out by individual or b	y a group of	
	studen	ts.		
Tev	t Books	/References		
1	Simon	Parsons, Advanced oxidation processes for water and wastewater treatment, IWA hing, 2004.	A	
2	Thoma	as Oppenlander, Photochemical Purification of Water and Air: Advanced Oxidati ses (AOPs): Principles, Reaction Mechanisms, Reactor Concepts, Wiley-VCH P		
3		nzo Belgiorno, Vincenzo Naddeo and Luigi Rizzo, Water, wastewater and soil tre ced Oxidation Processes (AOP), Lulu Enterprises, 2011.	eatment by	

4	Jean-Pierre Franc, Jean-Marie Michel, "Fundamentals of Cavitation", Kluwer Academic					
	Publishers, Dordrecht.					
5	T. J. Mason and J. P. Lor	imer, "Applied sonochemistry: Uses of power ultrasound in chemistry and				
	processing", Wiley-VCH publishers.					
Sylla	Syllabus for Unit Tests					
Unit	Unit Test I Units I, II, and III					
Unit	Jnit Test II Units IV, V, and VI					

		Elective I: Natural Products	
Designatio	n: ProfessionalElectiv	2	
Pre-requis	ite Courses: Students	should have basic knowledge of Chemistry and ana	ulytical Techniques
Fooding	Sahama	Examination Scheme Cr	redits Allotted
Feaching S Lectures	: 04Hours/Week		
Practical	: 02Hours/Week		eory : 04 actical : 01
Total	: 06Hours/Week		tal Credits : 05
Total	. UUTIOUTS/ WCCK	Total : 150 Marks	
		Total . 150 Marks	
Course Ou	itcomes		
	ize natural products an	d classify them	
U	1	l in natural product extraction.	
		ns for natural products.	
		nical and allied industry.	
	temechanism in biosyr		
	2	t studies in any natural product.	
		Topics Covered	
UNIT-I	Introduction to Na	tural Products	(08 Hou
01112 2		natural products; Characterisation: Metl	
		A	troscopic.
	-	arbon structure; Identification of functional g	1
	various methods suc	h as IR, NMR and chemical	
UNIT-II	Technology involve	ed	(08 Hou
	Isolation and purif	ication of natural products; Solvent extraction	n method
		ction of phytochemicals; Steam distillation	
	extraction; Percolat	ion; Supercritical fluid extraction;Ultra sound extraction	xtraction;
		extraction of polyphenols.	
UNIT-III	Modifications to na		(08 Hou
		tion of natural products: structural simplificat	
		for discovery of novel compounds, ligand mod	lification,
	biosynthetic modifie		
UNIT-IV	Application of Nat		(08 Hou
		ile industry; food industry; cosmetic industry an	-
	• •	es of different natural products as a raw ma	terial for
	synthesis of drugs.		(00 11
TATES TO	Application to Bios		(08 Hou
UNIT-V	Biosynthetic mech	anism: method, isolation, identification; Syn	tnesis of
UNIT-V		sinner vi propanoids and tlavanoid compounds	
UNIT-V	aromatic compound		(00
UNIT-V UNIT-VI	Process Developme	ent studies	(08 Hou
	Process DevelopmeIdentification of pro	ent studies oduct; selection of product recovery technique; f.	low sheet
	Process DevelopmentIdentification of pro of unit operations	ent studies oduct; selection of product recovery technique; fi and processes for achieving finished product;	low sheet operation
	Process Developme Identification of pro of unit operations parameters; total c	ent studies oduct; selection of product recovery technique; f.	low sheet operation

Proj	ect Based Learning					
1.	Select any specific natural product and do the characterisation using any chemical technique					
2.	Draw a pfd of unit operation and processes involved in any specific natural product industry.					
3.	Group discussion on isolation and purification of poly phenols					
4.	Literature survey for chemicals obtained from plant pigments.					
5.	Collect data for extraction of natural products in food industry.					
6.	Experiment for solvent extraction of any natural product selected.					
7.	Preparation of a brief report onin bio synthesis of natural product.					
8.	Group discussion and presentation for modification in natural products.					
9.	Process development studies for selection of any natural product with presentation					
10.	Cost estimation and limitation studies for a given natural product					
	Term Work:					
	Term work will consist of the seminar report prepared and presented by selecting topic from any unit in consultation with faculty.					
Text	Books/References					
1	I. L. Finar,Organic Chemistry: Stereochemistry & the Chemistry of NaturalProducts, Vol.II., Pearson Education India, 5th Ed. ISBN: 81-7758-541-X.					
2	H. Bart & S. Pilz, Industrial Scale Natural Products Extraction, Wiley-VCH Verlag& Co., Germany, 2011. ISBN: 978-3-527-32504-7.					
3	O. Sticher, Natural product isolation, Natural Product Reporter, 25, 517–554, 2008, (http://disruptechno2.free.fr/FMS/Natural%20product%20isolation%20(Otto20Sticher).p df)					
4	J. Apsimon, The Total synthesis of Natural Products, Wiley-Interscience, 1993, ISBN 047158083X.					
Sylla	ibus for Unit Tests					
Unit	Test I Units I, II, and III					
Unit	Test II Units IV, V, and VI					

CHEMICAL PROCESS EQUIPMENT DESIGN AND DRAWING

Designation: Professional Core

Pre-requisite Courses: Material and energy balance calculations, Mass transfer, and Chemical reaction engineering

Teaching S	Scheme	Examination Scheme		Credits Allot	ted
Lectures	: 03 Hours/Week	End Semester Examination	: 60 Marks	Theory	: 03
Practical	: 02 Hours/Week	Continuous Assessment	: 40 Marks	TW/PR	: 01
Total	: 05 Hours/Week	Term-work (TW)	: 25 Marks	Total Credits	: 05
		Practical/Oral	: 25 Marks		
		Total	: 150 Marks		
		I		1	
Course Ou	tcomes				
1 Apply a	nd understand differen	t codes for equipment design.			
2 Deign d	ifferent heads used for	equipments			
3 Design	different columns used	l in distillation/Absorption.			
		ackings used in packed colum	ins.		
	Dryers and Filters.				
-		ike cyclone separator, gravity		inter, fluid –flui	id separato
electros	tatic precipitator, cooli	ing towers, evaporators, dryers	s, crystallizers.		
		Topics Covered			
UNIT-I	Introduction to Pro	ocess Equipment Design			(06 Hour
	T 1 1				
	Introduction to var	ious mechanical properties	of materials to	be used as	
	material of constru	iction, resistance of metals	to corrosion u	nder varying	
	material of constru conditions of tempe	ection, resistance of metals erature and pressure etc. The	to corrosion u ories of failures	nder varying s, application	
	material of constru- conditions of tempe and use of various of	ection, resistance of metals erature and pressure etc. The codes and standards in design	to corrosion u pries of failures . Representatio	nder varying s, application n of different	
	material of constru- conditions of temper and use of various of utilities and symbol	ection, resistance of metals erature and pressure etc. The codes and standards in design ols, General design procedur	to corrosion u pries of failures . Representatio e, equipment o	nder varying s, application n of different classification,	
	material of constru- conditions of temper and use of various of utilities and symbol study of design pa	action, resistance of metals erature and pressure etc. The codes and standards in design als, General design procedur arameters such as maximum	to corrosion u pries of failures . Representatio e, equipment of h working pres	nder varying s, application n of different classification, ssure, design	
	material of constru- conditions of temper and use of various of utilities and symbol study of design pa pressure, design tem	ection, resistance of metals erature and pressure etc. Theo codes and standards in design els, General design procedur arameters such as maximum nperature, design stress & fac	to corrosion u pries of failures . Representatio e, equipment of working pres tor of safety, d	nder varying s, application n of different classification, ssure, design esign of wall	
	material of constru- conditions of temper and use of various of utilities and symbol study of design pa pressure, design tem thickness & minimu	action, resistance of metals erature and pressure etc. The codes and standards in design als, General design procedur arameters such as maximum	to corrosion u pries of failures . Representatio e, equipment of working pres tor of safety, d	nder varying s, application n of different classification, ssure, design esign of wall	
	material of constru- conditions of temper and use of various of utilities and symbol study of design pa pressure, design tem thickness & minimu possions ratio.	action, resistance of metals erature and pressure etc. Theo codes and standards in design els, General design procedur arameters such as maximum nperature, design stress & fac um actual thickness, corrosion	to corrosion u pries of failures . Representatio e, equipment of working pres tor of safety, d	nder varying s, application n of different classification, ssure, design esign of wall	
UNIT-II	 material of construct conditions of temperature and use of various of utilities and symbol study of design participation pressure, design temperature thickness & minimutipossions ratio. Design of pressure 	ection, resistance of metals erature and pressure etc. The codes and standards in design ols, General design procedur arameters such as maximum nperature, design stress & fac um actual thickness, corrosion vessels and storage tank	to corrosion u pries of failures . Representatio e, equipment of a working pres tor of safety, d a allowance, de	nder varying s, application n of different classification, ssure, design esign of wall esign loading,	(06 Hou
UNIT-II	 material of construct conditions of temperature and use of various of utilities and symbol study of design participation pressure, design temperature thickness & minimutipossions ratio. Design of pressure 	action, resistance of metals erature and pressure etc. Theo codes and standards in design els, General design procedur arameters such as maximum nperature, design stress & fac um actual thickness, corrosion	to corrosion u pries of failures . Representatio e, equipment of a working pres tor of safety, d a allowance, de	nder varying s, application n of different classification, ssure, design esign of wall esign loading,	(06 Hour
UNIT-II	material of constru- conditions of temper and use of various of utilities and symbol study of design pa pressure, design ten thickness & minimu possions ratio. Design of pressure Design of pressure	ection, resistance of metals erature and pressure etc. The codes and standards in design ols, General design procedur arameters such as maximum nperature, design stress & fac um actual thickness, corrosion vessels and storage tank	to corrosion u pries of failures . Representatio e, equipment of working pres tor of safety, d n allowance, de	nder varying s, application n of different classification, ssure, design esign of wall esign loading, ed to internal	(06 Hour
UNIT-II	 material of construct conditions of temperature and use of various of utilities and symbols study of design participation of the pressure, design temperature design of pressure pressure and combination of the pres	ection, resistance of metals erature and pressure etc. Theo codes and standards in design els, General design procedur arameters such as maximum operature, design stress & fac um actual thickness, corrosion vessels and storage tank vessels and storage tank: V pined loading, cylindrical an	to corrosion u pries of failures . Representatio e, equipment of n working pres tor of safety, d n allowance, de Yessels subjected d spherical sh	nder varying s, application n of different classification, ssure, design esign of wall esign loading, ed to internal cell, resultant	(06 Hour
UNIT-II	 material of construct conditions of temperature and use of various of utilities and symbol study of design participation pressure, design temperature design of pressure design of pressure pressure and combinations and combination of pressure and combinations in pressure and combinations in the pressure and combination of pressure and combinations in the pressure and combination of pressure and combinations in the pressure and combinations in the pressure and combinations in the pressure and combination of pressure and combinations in the pressure and combinations is pressure and combinations. 	ection, resistance of metals erature and pressure etc. The codes and standards in design ols, General design procedur arameters such as maximum operature, design stress & fac um actual thickness, corrosion vessels and storage tank vessels and storage tank: V bined loading, cylindrical an pressure vessel, stresses in hig	to corrosion u pries of failures . Representatio e, equipment of working pres tor of safety, d n allowance, de d spherical sh h pressure vess	nder varying s, application n of different classification, ssure, design esign of wall esign loading, ed to internal cell, resultant sels, optimum	(06 Hour
UNIT-II	 material of construct conditions of temperature and use of various of utilities and symbol study of design participation of the pressure, design temperature design of pressure pressure and combest stresses induced in pressure and combest stresses stresses induced stresses stresses stresses stresses stresses stress	ection, resistance of metals erature and pressure etc. The codes and standards in design ols, General design procedur arameters such as maximum operature, design stress & fac um actual thickness, corrosion vessels and storage tank vessels and storage tank: V bined loading, cylindrical an pressure vessel, stresses in hig of various heads & closures su	to corrosion u pries of failures . Representatio e, equipment of n working pres tor of safety, d n allowance, de d spherical sh h pressure vess ach as flat head	nder varying s, application n of different classification, ssure, design esign of wall esign loading, ed to internal cell, resultant sels, optimum	(06 Hour
UNIT-II	 material of construct conditions of temperature and use of various of utilities and symbols study of design participation of the pressure, design temperature design of pressure pressure and combes stresses induced in pressure and combes stresses induced in pressure and combes the stresses induced in pressure and combes stresses stresses stresses stresses stresses stresses stresses stresses stre	ection, resistance of metals erature and pressure etc. Theo codes and standards in design els, General design procedur arameters such as maximum operature, design stress & fac um actual thickness, corrosion vessels and storage tank vessels and storage tank: V bined loading, cylindrical an pressure vessel, stresses in hig of various heads & closures su , hemispherical head, and con	to corrosion u pries of failures . Representatio e, equipment of n working pres tor of safety, d n allowance, de d spherical sh h pressure vess ich as flat head ical head.	nder varying s, application n of different classification, ssure, design esign of wall esign loading, ed to internal cell, resultant sels, optimum , torrispherial	(06 Hou
UNIT-II	 material of constructions of temperature and use of various of utilities and symbol study of design partice pressure, design temperature possions ratio. Design of pressure Design of pressure pressure and comberts stresses induced in pressure vessel size, design of head, elliptical head Design of storage tage 	ection, resistance of metals for erature and pressure etc. The codes and standards in design ols, General design procedur arameters such as maximum operature, design stress & fac um actual thickness, corrosion vessels and storage tank vessels and storage tank: V bined loading, cylindrical an pressure vessel, stresses in hig of various heads & closures su , hemispherical head, and con ank, types of storage tank, typ	to corrosion u pries of failures. Representatio e, equipment of n working pres- tor of safety, d n allowance, de d spherical sh h pressure vess icch as flat head ical head. pes of roof for	nder varying s, application n of different classification, ssure, design esign of wall ssign loading, ed to internal cell, resultant sels, optimum , torrispherial storage tank,	(06 Hour
UNIT-II	material of constru- conditions of temper and use of various of utilities and symbol study of design par pressure, design tem thickness & minimu possions ratio. Design of pressure Design of pressure pressure and comb stresses induced in pressure vessel size, design of head, elliptical head Design of storage tar types of losses in flor	ection, resistance of metals erature and pressure etc. Theo codes and standards in design els, General design procedur arameters such as maximum operature, design stress & fac um actual thickness, corrosion vessels and storage tank vessels and storage tank: V bined loading, cylindrical an pressure vessel, stresses in hig of various heads & closures su , hemispherical head, and con	to corrosion u pries of failures. Representatio e, equipment of n working pres- tor of safety, d n allowance, de d spherical sh h pressure vess icch as flat head ical head. pes of roof for	nder varying s, application n of different classification, ssure, design esign of wall ssign loading, ed to internal cell, resultant sels, optimum , torrispherial storage tank,	(06 Hour
	 material of construct conditions of temperature and use of various of utilities and symbols study of design particles and use of various of utilities and symbols study of design particles and thickness & minimupossions ratio. Design of pressure Design of pressure pressure and combisite stresses induced in pressure and combisite stresses and combisite st	ection, resistance of metals erature and pressure etc. Theo codes and standards in design als, General design procedur arameters such as maximum operature, design stress & fac an actual thickness, corrosion vessels and storage tank vessels and storage tank: V bined loading, cylindrical an pressure vessel, stresses in hig of various heads & closures su , hemispherical head, and con ank, types of storage tank, typ pating roof tank, estimation of	to corrosion u pries of failures. Representatio e, equipment of n working pres- tor of safety, d n allowance, de d spherical sh h pressure vess icch as flat head ical head. pes of roof for	nder varying s, application n of different classification, ssure, design esign of wall ssign loading, ed to internal cell, resultant sels, optimum , torrispherial storage tank,	
	 material of construct conditions of temperature and use of various of utilities and symbols study of design participation of design participation of the symbols o	ection, resistance of metals erature and pressure etc. Theo codes and standards in design ols, General design procedur arameters such as maximum operature, design stress & fac um actual thickness, corrosion vessels and storage tank vessels and storage tank: V bined loading, cylindrical an pressure vessel, stresses in hig of various heads & closures su , hemispherical head, and con ank, types of storage tank, typ pating roof tank, estimation of gn	to corrosion u pries of failures . Representatio e, equipment of n working pres tor of safety, d n allowance, de d spherical sh h pressure vess ich as flat head ical head. pes of roof for nozzle diamete	nder varying s, application n of different classification, ssure, design esign of wall esign loading, ed to internal cell, resultant sels, optimum , torrispherial storage tank, er for drain in	
UNIT-II UNIT-III	 material of construct conditions of temperature and use of various of utilities and symbols study of design participation of design participation of the symbols o	iction, resistance of metals for erature and pressure etc. Theo codes and standards in design ols, General design procedur arameters such as maximum operature, design stress & fac um actual thickness, corrosion vessels and storage tank vessels and storage tank: V bined loading, cylindrical an pressure vessel, stresses in hig of various heads & closures su , hemispherical head, and con ank, types of storage tank, typ pating roof tank, estimation of gn umn- distillation columns, dest	to corrosion u pries of failures . Representatio e, equipment of a working pres tor of safety, d a allowance, de d spherical sh h pressure vess ach as flat head ical head. pes of roof for nozzle diamete	nder varying s, application n of different classification, ssure, design esign of wall esign loading, ed to internal cell, resultant sels, optimum , torrispherial storage tank, er for drain in	(06 Hour (06 Hour
	 material of construct conditions of temperature and use of various of utilities and symbols study of design participation of the pressure, design temperature design of pressure pressure and combest stresses induced in pressure and combest stresses stresses induced in pressure and combest stresses stresses stresses	ection, resistance of metals erature and pressure etc. Theo codes and standards in design ols, General design procedur arameters such as maximum operature, design stress & fac um actual thickness, corrosion vessels and storage tank vessels and storage tank: V bined loading, cylindrical an pressure vessel, stresses in hig of various heads & closures su , hemispherical head, and con ank, types of storage tank, typ pating roof tank, estimation of gn	to corrosion u pries of failures . Representatio e, equipment of a working pres tor of safety, d a allowance, de d spherical sh h pressure vess ach as flat head ical head. pes of roof for nozzle diamete	nder varying s, application n of different classification, ssure, design esign of wall esign loading, ed to internal cell, resultant sels, optimum , torrispherial storage tank, er for drain in	

UNI	T-IV	Packed Column Design	(06 Hours)	
		Choices of packing, types of packing, packed bed height (distillation and		
		absorption), HETP, HTU, NTU, Cornell's method, Onda's method, column		
		diameter, column internals, column auxiliaries.		
UNI	T-V	Filters & Dryers:	(06 Hours)	
		Various types of filters like vacuum filters, pressure filters, centrifuges and		
		rotary drum filters, design of rotary drum filters, including design of drum,		
		shaft, bearing and drive system. Types of dryers, batch type dryers,		
		continuous dryers.		
UNI	T-VI	Design of some novel separation equipments	(06 Hours)	
		Design of some separation equipment like cyclone separator, gravity		
		thickener, decanter, fluid -fluid separator, electrostatic precipitator,		
		Adsorption column, Ion exchange equipment		
•		ed Learning		
1	1	e a report on advance equipments which are newly introduced		
2		e a report on different codes and symbols used in design of a particular plant.		
3		e a model for any of the equipment		
4	Group	discussions on the following topics:		
	a)	Advances in equipment design.		
	b)	Distillation column selection and sizing.		
		Packed column Vs Plate column.		
5		any one chemical process industry and present a report on different equipments	utilized for	
5	process		utilized for	
6	1	he help of this subject knowledge, write a guideline report on how you would app	ly your	
0		ts in designing a economic plant layout for any industry.	ny your	
7		e a report on advance equipments which are newly introduced in the current year		
8		presentation (seminar) on equipment selection and design.	•	
0	crowp.			
Terr	n Work	•		
		• vill consist of the Practicals and drawings listed below, out of which any eight a	re to be done	
		Any one drawing in Autocad.		
1		d design and drawing of enclosures and supports		
2		and drawing of pressure vessels.		
3		and drawing of pressure vessels.		
4		d design and drawing of distillation column.		
5		d design and drawing of absorption column		
6		various packings.		
7		and calculations of packed column.		
8		d design and drawing of spray dryer.		
9		and drawing of rotary filter.		
10		the conditions of stress analysis of columns.		
		References	1	
1		M.V, and Mahajani. V.V, "Process Equipment Design," 3rd Edn. Macmillan In	idia Limited,	
		elhi, 1996		
2		ll, L.E., and Young, E.M., "Process Equipment Design", Wiley Eastern, 1968.		
3	Sinnott	. R.K, Coulson & Richardson's, "Chemical Engineering", Volume 6, 3rd Edn.,	Butterworth	

	Heinemann, New Delhi, 1999.				
4	Bhattacharya B C, Chemica	l Equipment Design, CBS publishers.			
5	Dawande S D, "Process Equipment Design" DENETT publishers				
Sylla	Syllabus for Unit Tests				
Unit	Unit Test I Units I, II, and III				
Unit	Unit Test II Units IV, V, and VI				

CHEMICAL PROCESS CONTROL AND AUTOMATION

Designation: Professional Core

Course Pre-requisites:

Students should have

1. Basic knowledge of Mathematics.

2. Chemical Process Instrumentation

TEACHING SCHEME:	EXAMINATION SCI	EXAMINATION SCHEME:	
Lectures: 4Hours/Week	End Semester Examina	tion: 60 Marks	Theory : 04
Tutorial : 2 Hour /Week	Internal Assessment	: 40 Marks	TW/Practical : 01
Total : 6 Hour /Week	Term-work (TW)	: 25 Marks	Total Credits : 05
	Practical/Oral	: 25 Marks	
	Total	: 150 Marks	

Course Outcomes:

After completion of the course students will be able to

- **1.** To give details of basic control action and develop mathematical models for control purpose.
- 2. To illustrate behavior of chemical processes and elucidate transient response of system.
- **3.** To express stability of the system and analyze frequency response of process.
- **4.** To analyze advanced control system.
- 5. To apply knowledge for controller multivariable control system.
- **6.** To analyze digital control system.

	Topics covered	
UNIT-I	 Open Loop Response of Simple Systems: Dynamics of first order systems using transfer functions; Various first order responses such as, a thermometer bulb. General response to step, ramp, impulse, and sinusoidal inputs; Concentration and temperature responses of a stirred tank Dynamic Behavior of Chemical Processes: Linearization of liquid level systems: Response of a pressure system, second order systems, the manometer; Response of interacting and non interacting systems. Transfer functions and the input-output models. Dynamics and analysis of first, second and higher order systems. 	(08 Hours)
UNIT-II	 Transient Response of Control Systems: Servo and regulated operation, General equations for the transient response, proportional control of a signal capacity process; Integral control, Proportional-integral control and derivative action. Stability: Concept of stability, Stability criterion, Routh test for stability. 	(08 Hours)

	Root Locus Analysis:	
	Concept of root locus, Locus diagram.	
UNIT	III Frequency Response Analysis:	(08 Hours)
01111	First order systems, Bode diagram, and Complex numbers to get frequency	(00 110015)
	response. Nyquist plot.	
	Tuning rules: Ziegler Nichols method, Cohen coon method etc.	
	Advanced Control Schemes: Controller selection and tuning, Control valve	
	characteristics and sizing, cascade control, Feed forward and ratio control,	
UNIT	1	(08 Hours)
	All control with chemical engineering applications	
	Multivariable control system	
	State space analysis, vector matrix analysis of control system, state space	
	representation of transfer function, controllability and observability, pole	
UNIT	\mathbf{v} placement design, state observer and observer design	(08 Hours)
UNII	MIMO control system	
	Transfer function, input output pairing, ineractions, transient response and	
	stability, RGA and loop pairing and decoupling	
	Digital control system;	
	Digital approximation of classical controls. Computer process control and	
UNIT	• • • •	(08 Hours)
	Introduction to DDC, DCS, PLC and SCADA Systems.	(********)
List of	Experiments:	
	work will consist of the experiments listed below, of which at least eight should be	e performed in
	tory by the students.	- P
1.	To study the closed loop pressure control for P control action and calculate offset.	
2.	To study the closed loop pressure control for PI action PID action.	
3.	To study optimizing performance for pressure control trainer by using tuning technique	ue with help of
0.	PID action.	are when morp of
4.	To study closed loop system for servo problem having PI action consideration.	
5.	To study the closed loop flow controller	
6.	To study the closed loop level controller	
7.	To study the ratio controller	
8.	To study the cascade controller	
9.	Root locus analysis on software (Ex. MATLAB)	
10.	Bode plot on software (Ex. MATLAB)	
11.	Nyquist plot on software (Ex. MATLAB)	
12.	PID control loop simulation for a first order process (Ex. SIMULINK)	
· · · ·	t based learnings:	
1.	Students have to visit chemical industry and prepare a detailed report on various con	trollers used in
	industry.	
2.	Watch NPTEL video and make report on various topics in process dynamics and cont	rol
3.	Group discussions on controllers used for chemical processes.	
4.	To find Transfer Function for 1 st order and 2 nd order process.	
5.	Draw the Control Loop and Block Diagram for different chemical processes.	

6.	Solve numerical questions in last three year question papers.				
7.	Give details on Advance Controllers.				
8.	Give details on Digital Controllers.				
9.	Elucidate IMC Controller	r in Detail.			
10.	Explicate MPC Controlle	er in Detail.			
11.	Clarify process Identifica	tion of any Chemical Process in detail			
12.	Enlighten Optimal contro	ol of any one Chemical Process.			
Text E	Text Books/References:				
1	G. Stephanopoulos, Chemical Process Control: An introduction to theory and practice, Prentice				
	Hall, New Jersey, 1984.				
2	P. Harriott, Process Cont	rol, Reprint of text, ed. Tata McGraw Hill, 1983.			
3	D. R. Coughanowr, Proc	ess system analysis and control, 2nded, McGraw Hill, 1991.			
4	Seborg, D.E., Edgar, T.F	. and Mellichamp, "Process dynamics and control," Wiley, New York, D.A.			
	2003.				
Syllab	Syllabus for Unit Test:				
Unit T	'est -I	UNIT – I , II, III			
Unit T	'est -II	UNIT – IV, V, VI			

PLANT UTILITY AND PROCESS SAFETY

Designation: Professional Core

Pre-requisite Courses: Mechanical operations, Fluid dynamics, Heat transfer, Mass Transfer, Reaction Engineering

Teaching Scheme		Examination Scheme		Credits Allotted	
Lectures	: 4 Hours/Week	End Semester Examination	: 60 Marks	Theory	: 04
Tutorial	: 1 Hour /Week	Continuous Assessment	: 40 Marks	TW/Practical	:
		Term-work (TW)	: Marks	Tutorial	: 01
		Total	: 100Marks	Total credits	: 05

Course Outcomes:

After completion of the course students would be able to:1Identify the common utilities required for Chemical Plant.

- 2 Express various types of boilers and their selection.
- 3 Analyze the importance of insulation and air pressure in process.

4 Identify and analyze the hazards.

- 5 Integrate the theoretical and practice knowledge to understand hazards activities.
- 6 Implement the safety designs and procedures.

	Topics covered				
UNIT-I	Identification of Common Plant Utilities	(08 Hours)			
	Role and importance of pant utilities in chemical plants, Water, compressed air,				
	steam, vacuum, refrigeration, venting, flaring and pollution abating. Water and				
	its quality, storage and distribution for cooling and fire fighting, Water				
	resource management.				
UNIT-II	Steam Generation and Utilization	(08 Hours)			
	Steam generation and its application in chemical process plants, distribution				
	and utilization; Types of boilers and their operation; steam economy, Steam				
	condensers and condensate utilization, Steam generation by utilizing process				
	waste heat using thermic fluids, Selection and sizing of boilers; waste heat				
	boilers.				
UNIT-III	Fluid moving: Compressors, Blowers and Vacuum Pumps	(08 Hours)			
	Compressors, blowers and vacuum pumps and their performance				
	characteristics; Methods of developing vacuum and their limitations, material				
	handling under vacuum, Creation of low pressure/vacuum by pumps and				
	ejectors.				
	Refrigeration and HVAC				
	Fundamentals of refrigeration, refrigerant management and safety, Selection of				
	refrigerants; Processes of HVAC, Psychometric Chart and Air-Conditioning				
	System, Ventilation and Indoor Air Quality.				
UNIT-IV	Elements of Safety	(08 Hours)			
	Elements of safety, safety and site selection; Plant layout and unit plot				
	planning; Definition of risk and hazard, Identification and assessment of the				
	hazards, distinction between hazards and risk, Industrial hygiene, toxicological				
	studies, Hazard operability (HAZOP) hazard analysis (HAZAN); Safety				
	Integrity Level (SIL) Studies; Technology selection and transfer, choosing the				
	right process.				

UNIT	C-V Safety in Chemical Processes	(08 Hours)		
01111	Introduction, Chemical Process classification, Process design and safety	(00 110415)		
	parameters, Safety parameters in the process design of phenol from cumene,			
	safety in polyvinyl chloride plant.			
	Chemicals and their Hazards			
	Material Safety data sheet, Material safety parameters analysis, Acetonitrile,			
	acetyl chloride, butyl amine, acrylamide, acrylonitrile, allyl alcohol, benzene,			
	bromine, isopropyl alcohol, acetaldehyde, ethylene oxide, butane, n-hexane,			
	anhydrous ammonia, acetone, toluene, p-xylene, acetic acid, monochloro benzene, oleum, carbon monoxide.			
TINIT		(00 II		
UNII	<i>i</i> 0	(08 Hours)		
	Process Safety Hierarchy, Process Safety Strategies, Managing Safety, Safety			
	Reviews and Accident Investigations, Designs for Process Safety, Inherently			
	Safer Designs, Controls: Double Block and Bleed, Safeguards or Redundancy,			
	Block Valves, Explosion Suppression, Designs for Runaway Reactions.			
T 1				
	Books/References:	16		
1	Sathiyamoorthy M.: Chemical Plant Utilities, Lambert Academic Publishing India, 20			
2	Coker A. K.: Ludwig's Applied Process Design for Chemical and Petrochemical Plant	s, vol. 1, 4^{m}		
2	Ed., Elsevier, USA, 2007	1		
3	McKetta J. J.: Encyclopedia of Chemical Processing and Design, Vol. 44, CRC Acad	demic Press,		
	USA, 1993			
4	McDowall R.: Fundamentals of HVAC Systems, 1st Ed., Butterworth-Heinemann Else			
5	Crowl D. A., Louvar J. F.: Chemical Process Safety Fundamentals with Applicati	ons, 3^{rd} Ed.		
	Prentice Hall USA, 2011			
6	Kletz T. A.: Hazop and Hazan: Identifying and Assessing Process Industry Hazards", Fouth			
	Edition, CRC Press, 1999			
	ect based learning: Below is the list of possible topics, which is for guidance faculty can	n design and		
provi	de relevant topics in addition to these			
1	Prepare a report on safety issues of any one particular industry.			
2	Prepare Utility Line Diagram (ULD) for typical process.			
3	Write a report on HAZOP study of one particular hazard.			
4	Prepare a report on the color codes for utility pipelines in chemical plants.			
5	Enhancement in collaborative learning is done through, group assignments on t	the topic of		
	chemicals and their possible hazards, MSDS study and Hazard reduction and safety	-		
	that will be given to encourage students to work with classmates to discuss and complete			
6	Write a report on "Importance of Industrial Hygiene in Chemical Industry"	•		
7	Group discussions on any of the following topics:			
	a) Importance of various utilities in chemical industries.			
	b) Process safety in petroleum industry			
	c) HAZOP Vs HAZAN			
8	Design a manual for application of utilities for various plants.			
9	With the help of this subject knowledge, write a guideline report on how you would ap	nly your		
,	concepts in industry.	P1, 3001		
10	Write a technical report on HAZAN study of any one particular threat.			
10				
	Elaborate the role of safety engineer in Chemical industry.			
12	Organizing a industrial visit to nearby industry to understand the plant utilities and safe	ery		
12	measures.	. 1		
13	Write a report on your visit to research and development laboratory of national/international	uonal		

repute	2.			
Syllabus for	Syllabus for Unit Test:			
Unit Test	: I	Units : I, II, and III		
Unit Test	: II	UNIT : IV, V, and VI		

Chemical Process Simulation I						
Designation: Professional Core						
Pre-requisite Courses: Fundamentals ofComputer, Mechanical operations, Heat Transfer, Fluid Flow,						
Mass Transfer, Thermodynamics and Chemical reaction engineering.						
				0 0		
Teach	hing S	cheme	Examination Sch	eme	Credits Allotted	
Practi		: 02Hours/Week	TW	:25 Marks		
			Practical/Oral	:25 Marks	Practical/Oral : 01	
			Total	: 50 Marks	Total Credits : 01	
Cour	se Ou	tcomes:				
After	comp	letion of the course stu	dents would be able	e to:		
		op a process flow diag				
		n simulation programs				
		ate reactors and estima		1		
		n and simulate heat exc	-			
				nary/ternary componen	its.	
				ulation environment fo		
	11 2		Topics (<u> </u>	
UNIT	Г-І	Getting started with	•			
				nt selection, property	method defining, Analysis of	
					e between all icons and their	
		features, setting up a property environment				
		1. Program for PFD b	building of any process.			
UNIT	Г -II	Using model palette of different unit operations and building a simulation case,				
		Selection of small u	init operations, ac	cessing inbuilt library	, adding new component to	
		library				
		2. Programs for estim				
		3. Programs based on		drum.		
		4. Programs on small				
UNII	ſ-III	Simulation of React		1 5 1 1 1		
		Simulation using different reactor models. Entering kinetic data in reaction tab, building				
		simulation for any reactor and simulating for optimized values. Comparing the results with				
		different models.				
		5. Simulation using R Stoic/ RCSTR/ Rplug flow model Model				
TINIT	г тт 7	6. Case study selecting any example and simulating.Simulation of heat exchanger				
UNII	L - I V			ng adding utilities and	cifying all details astimating	
		Design of heat exchangers: model building, adding utilities, specifying all details, estimating				
		optimised values. 7. Simulation of shell	and Tube heat evo	hanger		
UNIT	ſ.V	Simulation of Distill				
	L - V	Simulation using diff		lumn models		
		0		ianni 1100015.		
		8. Simulation using DSTWU model.9. Simulation using RADFRAC model				
UNIT-VI		Application to Chen				
	- • 4			emical engineering example	amples	
				ng all unit operations a	-	
		11. Optimizing the va		o operations a	Leeense.	
Term	n Wor	k				
	01					

Term work will consist of the programs/practical's listed above, out of which any eight programs/practical's are to be performed in laboratory by the students.

Text Books/References:				
1	R. Schefflan, Teach Yourself the basics of Aspen Plus, Wiley-AIChE, 2 nd Edition 2016.			
2	K. Al-Mallah, Aspen Plus: Chemical Engineering Applications, Wiley, 2016.			
3	J. Haydary, Chemical Process Design and Simulation, Wiley, 2019.			
4	A. Jana, Process Simulation and Control using Aspen, PHI learning, 2 nd Edition, New Delhi,			
	2012.			

PROJECT: STAGE-I

Designation: Professional Core

Pre-requisite Courses: Knowledge of chemistry, Material and energy balance calculations, Mass transfer, and Chemical reaction engineering, Equipment design, etc.

Teaching Scheme		Examination Scheme		Credits Allotted
Practical	: 02Hours/Week	Term-work (TW)	: 50 Marks	TW/Oral : 03
Total	: 02 Hours/Week	Practical/Oral	: 50 Marks	Total Credits : 03
		Total	: 100 Marks	

Course Objectives

- 1 Fabrication of the experimental setup/new system and/or purchase of standard components
- 2 Pilot run and/or validation of new system for its performance
- 3 Modifying the system if required to improve its performance
- 4 Detailed parametric studies of the modified system and analyzing the results
- 5 Writing technical report, research article and/or filing a patent

Course Contents

Students need to approach to the guide after guide allotment using standard procedure. Guide will elaborate the project to students and decide the objectives and the plan of work.

Minimum number of in-sem. project presentations: 03

Parameters for evaluation of project in University examination

Idea of Project/Topic, Technical content, Innovation, Experimentation/Model development/Software development/Simulation development, etc., Participation as an Individual, Research Potential, Project Hardware/Software, Fabrication/Model/Equipment development, Data Analysis, Attendance, Timely completion, Report writing, Presentation

Progress report card will be issued to each student to monitor the progress of work.

Assessment and progressive evaluation of the project will be done by the committee consisting of senior faculty members. The record of progressive evaluation shall be submitted in the department at the end of the semester and made available at time of university examination.

INTERNSHIP

Designation: Professional Core

Pre-requisite Courses: Knowledge of chemistry, Material and energy balance calculations, Mass transfer, and Chemical reaction engineering, Equipment design, etc.

Teaching Scheme	Examination Scheme		Credits Allotted
	Term-work (TW)	: 25 Marks	TW/Oral : 03
	Practical/Oral	: 25 Marks	Total Credits : 03
	Total	: 50 Marks	

Course Objectives

1 Make students familiar with industry environment

- 2 Take up on-site assignment as trainees or interns in order to bridge the gap between theory and industrial practices
- 3 To apply theory learned in classroom to industrial practices
- 4 To impart the report writing skills.

Course Contents

Internship of 60 days is added as an integral component of curriculum to bridge the gap between classroom theory and industrial practice. It is expected that students shall undergo Internship in reputed industrial organization after semester VI.

It is mandatory for students to undergo in –plant training after completion semester VI in reputed industrial organization. The students shall submit the Intern Certificate issued by the industry organization as well as a technical report not exceeding 30 pages within stipulated time to be eligible for making a presentation before the committee constituted by the department. On the basis of daily work carried out in the industry, student shall prepare record book. This record book shall be checked and signed by his/her supervisor from the industrywhere he/she is doing internship on daily basis.

University examination carries 50 Marks and after successful completion, student may be awarded 3 credits for the internship work. Marks will be awarded out of maximum 50 and three credits will be given upon completion of internship towards the degree requirements, as per the regulations. Internship will ultimately assist students to apply theory learned in classroom to industrial practices so as to understand engineering/technical solutions in a global, economic, environmental and societal context.

Programme: B. Tech Chemical (2021)

Semester- VIII (Chemical)

ELECTIVE-II: Nanomaterials Synthesis and Applications

Designation: Elective

Pre-requisite Courses: Basic chemistry, Physical chemistry, Mass transfer, Fluid flow operations, Chemical Engineering Thermodynamics

Teaching Scheme		Examination Scheme		Credits Allotted	
Lectures	: 4 Hours/Week	End Semester Examination	: 60 Marks	Theory	:04
Practical	: 2 Hour /Week	Continuous Assessment	: 40 Marks	TW/Practical	:01
		Term-work (TW)	: 50 Marks	Tutorial	:
		Total	: 150Marks	Total credits	: 05
Course Ou	tcomes.				
		tudents would be able to:			
	Define the importance of nanotechnology and their property optimization				
2 Des	Design the methodology for synthesis of nanomaterials				
3 Det	ermine suitable proce	ss for analysis of nanomateria	le and evaluate	their properties	

3	Determine suitable	process for analysis	of nanomaterials and	evaluate their properties
---	--------------------	----------------------	----------------------	---------------------------

- 4 Define the applications of nanomaterials and their property requirements for desired applications
- 5 Explain environmental issues and risks involved during nanomaterial applications and design safe pathway
- 6 Define suitable methodology for design of product from nanomaterials

Topics covered				
UNIT-I	Introduction toNano-Materials	(08 Hours)		
	Importance of Nanotechnology, opportunity at the nano scale, length and time	, , ,		
	scale in structures, energy landscapes, interdynamic aspects of inter molecular			
	forces, classification based on the dimensionality, nanoparticles, nanoclusters,			
	nanotubes, nanowires and nanodots, semiconductor nanocrystals carbon			
	nanotubes, influence of nano structuring on mechanical, optical, electronic,			
	magnetic and chemical properties			
UNIT-II	Nanomaterials synthesis	(08 Hours)		
	Synthesis and processing, method of nano structuredmaterial preparation -			
	mechanical grinding, wet chemical synthesis, sol-gel processing, gasphase			
	synthesis, gas condensation processing, chemical vapor condensation, nano			
	compositesynthesis – processing			
	Biological methods of synthesis: Use of bacteria, fungi, Actinomycetes for			
	nanoparticlesynthesis, Magnetotactic bacteria for natural synthesis of magnetic			
	nanoparticles; S-layerproteins, Viruses as components for the formation of			
	nanostructured materials; Synthesis processand application, Role of plants in			
	nanoparticle synthesis			
UNIT-III	Analysis of nanomaterial properties	(08 Hours)		
	X-ray Diffraction, Thermal Analysis Methods, Differential Thermal Analysis			
	and Differential scanning calorimetry, Spectroscopic techniques, UV-Visible			
	Spectroscopy, IR Spectroscopy, Microwave Spectroscopy, Raman			
	Spectroscopy, Electron Spin Resonance Spectroscopy, NMR Spectroscopy-			

	Particle size characterization: Zeta Potential Measurement, Particle size	
	Analysis, X-ray Photoelectron spectroscopy, Optical microscopy, Scanning	
	Electron Microscopy, Transmission Electron Microscopy, Atomic Force	
	Microscopy, Scanning Tunneling Microscopy	
UNIT		(08 Hours)
	Industrial applications of nanomaterials, in the areas of electronics, photonics,	`
	biology, healthand environment, medicine, defence, chemicals, catalysts,	
	textiles, etc. Application of nanotechnology in remediation of pollution,	
	photocatalysis and other nanocatalysts, greenhousegases, global warming.	
UNIT	C-V Environmental aspects and risk analysis of nanomaterials	(08 Hours)
	Identification of Nano-specific risks, responding to the challenge, human	
	health hazard, risk reduction, standards, safety, transportation of nanoparticles,	
	emergency responders.	
	Riskassessment, environmental impact, predicting hazard, environmental and	
	policy making, ecotoxicitymeasurement of nanomaterials, vacuum packaging	
	under inert gas atmosphere, methodology for stabilization, human safety in	
	nanomaterial processing area.	(0.0. ==
UNIT	1	(08 Hours)
	Criteria for selection of product, product development process, design for	
	manufacture, estimate the manufacturing cost, reduce the support cost,	
	prototyping, economics of product development projects, elements of	
	economic analysis, financial models, sensitive analysis and influence of the	
	quantitative factors	
Toyt	Books/References:	
1	P.P. Simeonova, N. Opopol and M.I. Luster, Nanotechnology - Toxicolog	rical Issues
1	andEnvironmental Safety, Springer USA 2006.	sical issues
2	Mick Wilson, KamaliKannangara, Geoff Smith, Michelle	Simmons,
2	BurkarRaguse, Nanotechnology: Basic sciences and emerging technologies, Overseas Pr	,
3	Charles P. Poole, Frank J. Owens, Introduction to Nanotechnology, Wiley Intersc	
5	2003.	
4	Mark A. Ratner, Daniel Ratner, Nanotechnology: A gentle introduction to the next B	Big Ideal. 1 st
•	Ed. Prentice Hall P7R:USA, 2002	-0 Iucus, I
5	G. Cao and Y.Wang, Nanostructures and Nanomaterials: synthesis, properties and appl	ications 2nd
-	Ed., World Scientific, Singapore, 2011	, _ _
6	H. S. Nalwa, Encyclopedia of nanoscience and nanotechnology, American Scientific	cPublishers.
-	USA 2007	
7 Willard, H. H, Merritt Jr., L. L, Dean, J. A., Settle Jr., F. A, Instrumental meth		
7	w mard, 11, 11, worther j1., L. L. Dean, J. A. Secto j1., 1. A. instrumental methods of a	naiysis, van
7	NostrandNew York, N.Y. USA, 2014	nalysis, van
7		naiysis, van
-		
Proje	NostrandNew York, N.Y. USA, 2014 cct based learning: Below is the list of possible topics, which is for guidance faculty car de relevant topics in addition to these	n design and
Proje	NostrandNew York, N.Y. USA, 2014 ect based learning: Below is the list of possible topics, which is for guidance faculty car	n design and
Proje provid	NostrandNew York, N.Y. USA, 2014 cct based learning: Below is the list of possible topics, which is for guidance faculty car de relevant topics in addition to these	n design and
Proje provid	NostrandNew York, N.Y. USA, 2014 ect based learning: Below is the list of possible topics, which is for guidance faculty car de relevant topics in addition to these Prepare a report on detail of Nano material, preparation, characterization, module and p	n design and
Proje provic 1	NostrandNew York, N.Y. USA, 2014 ect based learning: Below is the list of possible topics, which is for guidance faculty car de relevant topics in addition to these Prepare a report on detail of Nano material, preparation, characterization, module and p design for anyone application	n design and
Proje provid 1	NostrandNew York, N.Y. USA, 2014 ect based learning: Below is the list of possible topics, which is for guidance faculty car de relevant topics in addition to these Prepare a report on detail of Nano material, preparation, characterization, module and p design for anyone application Technical interview based on knowledge of Nano technology.	n design and
Proje provid 1	NostrandNew York, N.Y. USA, 2014 ect based learning: Below is the list of possible topics, which is for guidance faculty car de relevant topics in addition to these Prepare a report on detail of Nano material, preparation, characterization, module and p design for anyone application Technical interview based on knowledge of Nano technology. Students have to study any five NPTEL/you-tube videos related to Nano tech	n design and

6	Students have to study any five research papers related to specific topic and prepare/present power				
	point presentation				
7	With the help of this subject knowledge, write a report on how you would apply your concepts in				
	industry.				
8	Case study on emerging th	ends in process/product innovation considering nano-technology.			
9	Students have to visit che	mical industry and make a detailed report on nano-technologies used in			
	the process.				
10	Write a report on your visit to research and development laboratory of national/international				
	repute.				
11	Write a report on nano-technologies for addressing the problems of Water and Energy.				
Syllabus for Unit Test:					
Unit 7	Test : I	Units : I, II, and III			
Unit 7	Test : II	UNIT : IV, V, and VI			

ELECTIVE-II: MEMBRANE SEPARATION

Designation: Elective

Pre-requisite Courses: Basic chemistry, Physical chemistry, Mass transfer, Fluid flow operations, Chemical Engineering Thermodynamics

Teaching Scheme		Examination Scheme		Credits Allotted	
Lectures	: 4 Hours/Week	End Semester Examination	: 60 Marks	Theory	: 04
Practical	: 2 Hour /Week	Continuous Assessment	: 40 Marks	TW/Practical	: 01
		Term-work (TW)	: 50 Marks	Tutorial	:
		Total	: 150 Marks	Total credits	: 05

Course Outcomes:

After completion of the course students would be able to:

1	Explain basics of membrane and	select proper material	l depending upon application
---	--------------------------------	------------------------	------------------------------

2 Explain the methods of membrane preparation and characterization

3	Determine suitable	process for size based	d separation and ex	plain its trans	port mechanism
---	--------------------	------------------------	---------------------	-----------------	----------------

- 4 Define the transport through non-porous membranes and define membranes for desired application
- 5 Explain basics and preparation of membrane for other specialized membrane processes
- 6 Design suitable module and parameters for the desired application

	Topics covered				
UNIT-I	-I Introduction and Membrane Materials				
	Introduction, historical development of membrane processes, definition of				
	membrane, permeation, retention and selectivity, membrane processes, their				
	categorization, material for membrane preparation, polymeric material,				
	inorganic materials, mechanical, thermal and chemical stability of membrane				
	based on material, choice of polymer for membrane preparation based on				
	application				
UNIT-II	Membrane Preparation and Characterizations	(08 Hours)			
	Preparation of synthetic membranes: phase inversion membranes, preparation				
	of composite membranes, preparation of inorganic membranes				
	Characterization: Porous membranes - electron microscopy, atomic force				
	microscopy, mercury intrusion, bubble point method, permeability method,				
	solute rejection characteristic; non-porous membranes - permeability, surface				
	analysis, wide angle X-ray, DCS/DTA, density measurement				
UNIT-III	Processes using porous membranes	(08 Hours)			
	Transport mechanism in porous membranes - Knudsen flow, friction model,				
	sieving mechanism				
	Processes: Microfiltration – membranes details, characteristics, industrial				
	applications; Ultrafiltration - membranes details, characteristics, industrial				
	applications; Nano-filtration - membranes details, characteristics, industrial				
	applications.				
UNIT-IV	Solution-diffusion based membrane processes	(08 Hours)			
	Transport mechanism – Solution-diffusion mechanism, solubility, diffusivity,				
	effect of temperature, interaction polymer crystallinity of solubility and				
	diffusivity; Free volume theory				
	Processes: Reverse osmosis - membranes details, characteristics, industrial				

	applications; Gas separation - membranes details, characteristics, industrial applications; Pervaporation - membranes details, characteristics, industrial applications	
UNI		(08 Hours)
UNI	C-V Other membrane processes Dialysis - membranes details, their preparation, characteristics, transport mechanism, industrial applications; Electrodialysis - membranes details, their preparation, characteristics, industrial applications; Membrane distillation - membranes details, their preparation, characteristics, industrial applications; Membrane bioreactor - membranes details, their preparation, characteristics, industrial applications; Liquid membranes - membranes details, ionic liquids, their preparation, characteristics, industrial applications; ion exchange - membranes details, their preparation, characteristics, industrial applications	(08 Hours)
UNI		(08 Hours)
	Selection of process depending upon applications, plate and frame module, spiral wound module, tubular module, capillary module, hollow fiber module, comparison between module configuration, system design, cross flow operations, hybrid dead end/cross flow operations, cascade operations, Process parameters, Energy requirements	(00 110013)
T (
	Books/References:	
1	Mulder M.: Basic Principle of Membrane Technology, Kluwer Academic Press Spri	inger Nature
	Switzerland AG, 1996	
2	Baker R. W.: Membrane Technology and Applications, John Wiley and Sons, Ltd. US	
3	Porter M. C.: Handbook of Industrial Membrane Technology, Noyes Publications, 1991	Switzerland,
4	Baker R. W., Cussler E. L., Eykamp W., Koros W. J., Riley R. L., Strathman H.: Membrane Separation Systems – Recent Developments and Future Directions, Noyes Data Corporation, USA, 1991 Nunes S. P., Peinemann KV., Membrane Technology in the Chemical Industry, Wiley-VCH	
	Verlag GMBH Germany, 2001	
Proje	ect based learning: Below is the list of possible topics, which is for guidance faculty car	n design and
	de relevant topics in addition to these	U
1	Prepare a report on detail of membrane material, preparation, characterization, module design for anyone application	and process
2	Technical interview based on knowledge of membrane technology.	
3	Students have to study any five NPTEL/you-tube videos related to membrane technology and prepare/present power point presentation.	
4	Group discussions on membrane science and technology related topics.	
5	Prepare a report on innovations in membrane technology and their practical importance	
6	Students have to study any five research papers related to specific topic and prepare/pr	resent power
	point presentation	
7	With the help of this subject knowledge, write a report on how you would apply your industry.	-
8	Case study on emerging trends in process/product innovation considering membrane te	
9	Students have to visit chemical industry and make a detailed report on membrane tused in the process.	-
10	Write a report on your visit to research and development laboratory of national/i repute.	international
11	Write a report on membrane technologies for addressing the problems of Water and Er	nergy.

Syllabus for Unit Test:				
Unit Test	: I	Units : I, II, and III		
Unit Test	: II	UNIT : IV, V, and VI		

Artificial Intelligence

Designation: Professional Elective

Pre-requisite Courses: Basic knowledge of Engineering Mathematics, Computer Programming

Teaching Schem	e	Examination Scheme		Credits Allot	ted
Lectures	: 04 Hours/Week	End Semester Examination	: 60 Marks	Theory	: 04
Practical	: 02 Hours/Week	Internal Assessment	: 40 Marks	TW/OR	: 01
Total	: 06 Hours/Week	Termwork	: 25 Marks	Total Credits	: 05
		Termwork and Oral	: 25 Marks		
		Total	: 150 Marks		

Course Outcomes

After completion of the course students would be able to

1 Formulate problem statement of chemical engineering process using artificial intelligence.

2 Apply formalisms of artificial intelligence to chemical engineering processes.

3 Estimate artificial neural network modeling parameters for chemical process.

4 Estimate genetic programming modeling parameters for chemical process.

5 Estimate principle components for a given system/process data.

6 Estimate economic artificial intelligence based optimization procedure for chemical process.

Topics Covered

UNIT-I	Introduction	(08 Hours)
	Introduction to Artificial Intelligence (AI); Applications of AI to Chemical	
	Engineering; Introduction to various AI- based formalisms; Principal	
	component analysis; Cause and effect relationships. Black box modelling.	
UNIT-II	AI-based Modelling Formalisms	(08 Hours)
	Introduction to various AI- based modelling formalisms; Artificial Neural	
	Networks (ANNs); Genetic Programming (GP); Support Vector Regression;	
	Fuzzy Logic (FL); Applications of these formalisms to Chemical engineering.	
UNIT-III	Artificial Neural Networks (ANNs)	(08 Hours)
	Biological background; ANN classification; Computational properties of ANNs; Modelling a single neuron; Building blocks of feed-forward neural network: Bias, Processing elements, Input layer, hidden layer, Output layer, Learning rate, Momentum, Transfer function; Error back propagation.	
UNIT-IV	Genetic Programming (GP) Introduction to evolutionary algorithms; Dependent variables; Independent variables; Mathematical operators; Initial population; Candidate solution; Tree structure; Initialization; Fitness evaluation and selection; Crossover; Mutation.	(08 Hours)
UNIT-V	Evolutionary Algorithms (EA)	(08 Hours)
	Introduction to stochastic evolutionary algorithms; Applications; Genetic algorithms; Particle Swarm method; Ant Colony method.	
UNIT-VI	Applications and Case Studies	(08 Hours)
	Chemical Engineering based different case studies solution using AI-based	

	modelling and optimization formalisms
*Pro	ject Based Learning
1.	Group discussions on any of the following topics:
	a) Role of Artificial Intelligence in Chemical Engineering
	b) Phenomenological, empirical and AI-based modelling
	c) Artificial Intelligence and Chemical Industries
2.	Make a complete chart of various AI based modeling formalisms with suitable schematics.
3.	Preparation of seminar report and oral presentation based on recent advances in Chemical
	Engineering with Artificial Intelligence.
4.	Students have to study any five NPTEL videos related to Artificial Intelligence and prepare/present power point presentation.
5.	Solving numerical based on core chemical engineering process problems using AI formalisms.
6.	Collect and read recent research papers on Artificial Neural Network and chemical process modelling and prepare summery report.
7.	Collect and read recent research papers on Genetic Programming and chemical process modelling and prepare summery report.
8.	Analyse the results for case study with Principal Component Analysis and interpret the results.
9.	Prepare question bank with appropriate answers based on the whole subject renewable energy.
10.	Enhancement in collaborative learning is done through, group assignments that will be given to
	encourage students to work with classmates to discuss and complete homework assignments.
*Stu	dents in a group of 3 to 4 shall complete any one project from the above list.
Torn	nwork:
Oral HOE sylla	examination will be based on the assessment of the term-work (duly certified by the teacher and D). The term-work shall consist of case study solved using AI-based formalisms mentioned in the bus OR term-work shall be based on the technical report/seminar based AI-based studies carried ou dividual or small group of students.
Text	Books/References
1	C.M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, Oxford, 1995.
2	S.S. Tambe, P.B. Deshpande, B.D. Kulkarni, Elements of Artificial Neural Networks with Selected Applications in Chemical Engineering, and Chemical & Biological Sciences, Simulation & Advanced Controls, Inc., Louisville, 1996.
3	J. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection MIT Press, Cambridge, M.A, 1992.
4	V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.
5	K. Deb, Optimization for Engineering Design: Algorithms and Examples, Prentice-Hall, New Delhi, 1995.
6	D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, Reading, MA, 1989.

Syllabus for Unit Tests		
Unit Test I	Units I, II, and III	
Unit Test II	Units IV, V, and VI	

ELECTIVE-II : BIO-SEPARATIONS

Designation: Professional Core

Pre-requisite Courses: Basic knowledge of Biology, Analytical chemistry and techniques.

Teaching Scheme		Examination Scheme		Credits Allotted			
Lectures	: 04Hours/Week	End Semester Examination	: 60 Marks	Theory	: 04		
Practical	: 02Hours/Week	Internal Assessment	: 40 Marks	Tutorial	: -		
Total	: 06 Hours/Week	Term-work (TW)	: 25 Marks	Practical	:01		
		Practical/Oral	: 25 Marks	Total Credits	: 05		
		Total	: 150Marks				

Course Outcome	s
-----------------------	---

1 Define concept of bio-separation, physico-chemical basis of bio-separation.

2 Learn low resolution bio-separation techniques.

3 Analyze high resolution bio-separation techniques.

4 Learn separation techniques like precipitation, crystallization, etc.

- 5 Identify the emerging bio-separation techniques like expanded-bed chromatography, hybrid bioseparations, etc.
- 6 Apply bio-separation knowledge for purification of β amylase, aspartic acid, etc.

Topics Covered

		(00 II_{aug})
UNIT-I	Introduction to Bio-separation	(08 Hours)
	An overview of bio-separation; Separation of cells and other insolubles from	
	fermented broth; bioproduct purification; characteristics of biological	
	mixtures; Broad categories of bioproducts; essential stages in downstream	
	processing; basic unit operations in downstream processing; physico-	
	chemical basis of bio-separation.	
UNIT-II	Low resolution Bio-separation techniques	(08 Hours)
	Cell disruption, Centrifugation; Liquid-liquid extraction; Leaching; Filtration;	
	Supercritical fluid extraction; Micro-filtration; Ultra-filtration; Adsorption;	
	Sedimentation	
UNIT-III	High resolution Bio-separation techniques	(08 Hours)
	Ultra-centrifugation; Different electrophoresis techniques viz. Isoelectric	
	focusing; Affinity separation; Chromatographic techniques viz. Paper, Gel;	
	Ion exchange; Affinity; GLC; HPLC; Dialysis.	
UNIT-IV	Other separation techniques	(08 Hours)
	Zone refining; Molecular sieves; Adductive crystallization; Reactive	
	extraction; Precipitation method using ammonium sulfate; organic solvents;	
	high molecular weight polymers; Reverse osmosis; Foam separation;	
	Aqueous two phase systems.	
UNIT-V	Emerging bio-separation techniques	(08 Hours)
	Membrane and monolith chromatography; Expanded-bed chromatography;	
	High-resolution ultrafiltration; Hybrid bio-separations; Introduction to SEP	
	box and Hyphenated techniques.	
		l

UNI	T-VI	Applications of Bio-separation -case studies Purification of β amylase; aspartic acid; insulin; Food and Beverages; Beer; Citric acid; Bio-chemicals: Butanol.	(08 Hours)		
Proj	ect Bas	ed Learning			
1.		a report on the recent advances in chromatographic processes with reference to th	e current		
	year.				
2.		te efficiencies of different chromatographic techniques.			
3.	Search	out some industries related to bio-separation.			
4.	Write	a technical report on your visit to a process industry.			
5.		t all the principles of the analytical techniques.			
6.	Perfor	m any one chromatographic technique.			
7.	Find o	ut different types of proteins with structure.			
8.	Prepar	e a report on downstream processing.			
9.		fteen minutes presentation (seminar) on particular topic and prepare a report.			
10.		discussion on merits and de-merits of bio-separation.			
*Stu	dents in	a group of 3 to 4 shall complete any one project from the above list.			
Terr	n Work				
Ter	m work	will consist of the seminars on the following topics.			
1	Gas ch	romatography.			
2	Membr	ane separation and its application in industry.			
3	Sedimentation and its application in industry.				
4	Reactiv	ve extraction.			
5	Materi	al analysis using paper chromatography			
6		esolution ultrafiltration.			
7	Gel ele	ctrophoresis			
8	Molecu	ılar sieves.			
9	Centrif	ugation.			
10	Adduct	ive crystallization			
Te1	xt Book	s/References			
1	P.A.Be Biotec	elter, E.L. Cussler and S.H.Wei, "Bio-separation–Downstream Proc hnology", Wiley India Pvt. Ltd., 2011.	cessing for		
2		rasad, "Downstream Process Technology-A New Horizon in Biotechnology", Fa, New Delhi, 2012.	Prentice Hall		
3	M.D.P	auline, "Bioprocess Engineering Principles", Academic Press, London, USA, 20	12.		
4		sankar, "Bio-separations: Principles and Techniques", Phi Learning Pvt. Ltd., 20			
5		mar, A. Awasthi, "Bio-separation Engineering: Comprehensive DSP Vo			
		tional Publishing House Pvt. Ltd., New Delhi, 2009.			
Syll	abus for	· Unit Tests			
Unit	Test I	Units I, II, and III			
Unit	Test II	Units IV, V, and VI			

Chemical Project Engineering and Economics

Designation: Professional Core

Pre-requisite Courses: Basic knowledge of engineering mathematics, core Chemical Engineering subjects, and process modeling

Teaching Scheme		Examination Scheme		Credits Allotted	
Lectures	: 04 Hours/Week	End Semester Examination	: 60 Marks	Theory	: 04
Drawings	: 02 Hours/Week	Internal Assessment	: 40 Marks	Practical	:01
Total	: 06 Hours/Week	Term-work	: 25 Marks	Total Credits	: 05
		Oral	: 25 Marks		
		Total	: 150 Marks		

Course Outcomes

After completion of the course students would be able to

1 Formulate preliminary techno economic feasibility report.

- 2 Elaborate the criteria for process selection and justification of the selected chemical process.
- 3 Estimate the total product cost.

4 Estimate the depreciation charges for various assets.

5 Evaluate the break even chart and its significance.

6 Estimate the critical path method (CPM) for project planning of given chemical process.

	Topics Covered			
UNIT-I	Introduction	(08 Hours)		
	Plant design and development : Design basis, process selection, material of			
	construction, plant location, plant layout and installation, plant operation and			
	control, safety, start up, shut down and operating guidelines; Preliminary			
	techno economic feasibility report.			
UNIT-II	Optimization and feasibility of plant design	(08 Hours)		
	Preliminary design: Design and selection of process equipments, standard			
	versus special equipment selection criteria, specification sheets; Comparison			
	of different processes; Importance of laboratory development and pilot plant;			
	utilities; Complete engineering flow sheet drawing; Flow diagrams: Process			
	flow diagram, qualitative flow diagram, quantitative flow diagram.			
UNIT-III	Cost estimation	(08 Hours)		
	Cash flow and cumulative cash position for industrial operations; Factors			
	affecting investment and production cost; Capital investments: Fixed capital			
	investment, working capital, method for estimating capital investment;			
	Estimation of total product cost: Direct production cost, fixed charges, plant			
	overhead costs, administrative expenses, distribution and marketing expenses;			
	Cost indexes.			
UNIT-IV	Depreciation	(08 Hours)		
	Introduction; Basic terminologies related to depreciation; Types of			
	depreciation: Functional depreciation, physical depreciation; Methods for			
	determining depreciation: Straight line method, Declining balance method,			
	Double declining balance method, Sum of the years digits method, Sinking			
	fund method.			

UNI	IT-V	Interest and investment costs Types of interest; Present worth and discount; Annuities: Relation between amount of ordinary annuity and the periodic payments, present worth of an annuity; Balance sheet; Evaluation of break even point and its significance; Profitability, Alternative investments and replacement: Methods for profitability evaluation, % rate of return, practical factors in alternative investment and replacement studies	(08 Hours)			
UNI	IT-VI	CPM and PERT Bar charts; Milestone charts; Introduction to Critical Path Method (CPM) and Project Evaluation and Review Technique (PERT); Applications of CPM and PERT; Basic Steps in PERT / CPM: Planning, scheduling, allocation of resources, controlling; Network Diagram Representation: Activity, classification of activities, event, classification of events, sequencing; Rules for drawing network diagram; Common errors in drawing networks; Advantages of CPM and PERT project planning; Detail calculation procedure of CPM and PERT project planning.	(08 Hours)			
*Pro	oiect Ba	sed Learning				
1.	·	ation of quantitative flow diagram for any process plant				
2.	Prepar	ation of feasibility report for any chemical product/process				
3.	_	ation of critical path network for specific case study/chemical process				
4.		ation of project evaluation and review technique for specific case study/chemical	process			
5.		nts have to study any five NPTEL videos related to Chemical Project Engineering and				
5.		mics and prepare/present power point presentation.	incernig und			
6.	Group a) b)	discussions on any of the following topics: Importance of project engineering techniques in chemical industries. Critical path method and project evaluation and review technique Role of economics in chemical process design				
7.	,	ecent research papers related to this subject area and prepare report				
8.	Prepar Econo	e question bank with appropriate answers based on Chemical Project Engi mics	neering and			
9.	Solvin	g numerical based on core chemical engineering using optimization methods				
10.		cement in collaborative learning is done through, group assignments that will age students to work with classmates to discuss and complete homework assignments assignments assignments assignments assignments as a student structure assignments as a student structure as a student structure as a student structure as a structure as a student structure as a structure a	-			
*Stu	dents in	a group of 3 to 4 shall complete any one project from the above list.				
т.						
	mwork	will consist of any six drawings of following:				
1	1	is flow diagram				
2	Plant l	ayout and elevations				
2						

Cumulative cash position for industrial operations					
Break Even Chart					
Critical Path Method (CPM)					
Project Evaluation and Review Technique (PERT)					
t Books/References					
T. F. Edgar and D. M. Himmblblau, Optimization of Chemical Processes, 2 nd Ed., Tata-McGrav					
Hill Publications, 2001.					
S. C. Chapra and R.P. Canale, Numerical Methods for Engineers, 6 th Ed., Tata-McGraw Hill					
Publications, 2015.					
A. Ravindran, K. M. Ragsdell, and G. V. Reklaitis, Engineering Optimization: Methods and					
Applications, 2 nd Ed., Wiley India, 2006.					
S. S. Rao, Engineering Optimization: Theory and Practice, 4 th Ed., John Wiley & Sons, Inc, 2009.					
M. S. Peters and K. D. Timmerhaus, Plant Design and economics for chemical engineers, Mc Graw					
Hill Publications, 2002.					
abus for Unit Tests					
Test I Units I, II, and III					
Test II Units IV, V, and VI					

Optimization Techniques in Chemical Engineering

Designation: Professional Core

Pre-requisite Courses: Basic knowledge of engineering mathematics, core Chemical Engineering subjects, and process modeling

Teaching Scheme		Examination Scheme		Credits Allotted	
Lectures	: 04 Hours/Week	End Semester Examination	: 60 Marks	Theory	: 04
Total	: 04 Hours/Week	Internal Assessment	: 40 Marks	Total Credits	: 04
		Total	: 100 Marks		

Course Outcomes

After completion of the course students would be able to

1 Formulate statement of optimization problem

- 2 Apply methods for unconstrained single variable optimization
- 3 Apply methods for unconstrained multivariable optimization
- 4 Elaborate economic optimization procedure for chemical engineering problems

5 Estimate optimum design procedure for chemical engineering problems

6 Estimate economic optimization procedure for process equipments

Topics Covered

	—		
UNIT-I	Introduction	(08 Hours)	
	Introduction to Optimization; Statement of optimization problems;		
	Classification of optimization problems; Examples from engineering		
	applications; Review of linear algebra		
UNIT-II	Unconstrained Single Variable Optimization	(08 Hours)	
	Methods and Applications: Region elimination methods; Methods		
	requiring derivatives: Newton-Raphson method, Bisection method, Secant		
	method		
UNIT-III	Unconstrained Multivariable Optimization	(08 Hours)	
	Gradient Based Methods: Cauchy's method, Newton's method, Marquardt	(***********************************	
	method		
UNIT-IV	Numerical Methods for Optimizing a Function of One Variable: Core		
	Chemical Engineering problem solution using following methods:		
	Unconstraint One Dimension Methods: Newton's Method, Quadratic		
	Interpolation, Cubic Interpolation; Unconstraint Multiple Variable: Random		
	search, Grid search, Simplex search, Quasi Newton method		
UNIT-V	Economic Optimization and Optimum Design	(08 Hours)	
	Nature of optimization; Uni-variable and multivariable systems; Analytical,	(00 110015)	
	graphical and incremental methods of solution; Lagrange multiplier method;		
	Linear programming; Other techniques and strategies establishing optimum		
	conditions; Break even chart for production schedule; Optimum production		
	rates in plant operation; Optimum conditions in batch and cyclic operation;		
	Critical path method; Project evaluation and review technique.		
UNIT-VI	Optimisation of Different Process Equipment	(08 Hours)	

	Transportation system	ns; Heat exchangers; Evaporators; Mass transfer		
	equipments and reacto	rs; Determination of height and diameter of different		
	process equipments at o	conditions of optimum cost; Pinch technology analysis;		
	Preparation of techno-e	conomic feasibility report.		
	I			
*Pro	ject Based Learning			
1.	_	ameter of different process equipments for optimum cost		
2.		t for any chemical product/process		
3.		work for specific case study/chemical process		
4.	Preparation of project evaluation	on and review technique for specific case study/chemical process		
5.	Students have to study any five	ve NPTEL videos related to Optimization in Chemical Engineering		
	and prepare/present power poir	nt presentation.		
6.	Group discussions on any of th	e following topics:		
	a) Importance of optimiza	tion technique in chemical industries.		
	b) Critical path method an	d project evaluation and review technique		
	c) Role of optimization in	process design		
7.	Read recent research papers related to this subject area and prepare report			
8.	Prepare question bank with appropriate answers based on optimization techniques in chemical			
	engineering			
9.	Solving numerical based on co	re chemical engineering using optimization methods		
10.	Enhancement in collaborative	learning is done through, group assignments that will be given to		
	encourage students to work wit	h classmates to discuss and complete homework assignments.		
*Stu	dents in a group of 3 to 4 shall c	omplete any one project from the above list.		
	Books/References			
1	Hill Publications, 2001.	Iblau, Optimization of Chemical Processes, 2 nd Ed., Tata-McGraw		
2	S. C. Chapra and R.P. Canale, Dublications, 2015.	Numerical Methods for Engineers, 6 th Ed., Tata-McGraw Hill		
3	A. Ravindran, K. M. Ragsde	ll, and G. V. Reklaitis, Engineering Optimization: Methods and		
	Applications, 2 nd Ed., Wiley In	dia, 2006.		
4	S. S. Rao, Engineering Optimiz	zation: Theory and Practice, 4 th Ed., John Wiley & Sons, Inc, 2009.		
5	M. S. Peters and K. D. Timmer	haus, Plant Design and economics for chemical engineers, Mc Graw		
	Hill Publications, 2002.			
Sylla	abus for Unit Tests			
-	Test I	Units I, II, and III		
Unit	Test II	Units IV, V, and VI		

			Industrial Management			
Desi	gnation	: Professional Core				
D	•••		r ,			
Pre-	requisit	e Courses: Concept of M	lanagement			
Teac	ching So	cheme	Examination Scheme	Cre	edits Al	lotted
Lectu		: 04 Hours/Week			eory	: 04
Tota	ıl	: 04 Hours/Week			tal Cred	its : 04
			Total : 1	00 Marks		
Cou	rse Out	comes				
-	-	etion of the course studen	ts would be able to			
		e types of business.				
		nd the types of organization of the forms of ownershi				
		e concepts of material ma				
		e concepts quality manage	· ·			
6 I	Know th	e various acts				
			Topics Covered			
UNI	T-I	Outline of Business	Topics Covercu			(08 Hours
			rial sectors Globalization Manageme	ant Process Pring		
		•	s of Management Types of organiza		-	
		-		tion, Department	ation,	
		Principles of Organization, Forms of ownership				
UNI	T-11	Financial Management				(08 Hours)
		-	apital Generation & (06 Hours) Mar			
		accounts, Taxation (Excis	e Tax, Service Tax, Income Tax, V	Value Added Tax	x and	
		Custom Duty)				
UNI	T-III	Material management				(08 Hours)
		Definition, functions, imp	oortance, relationship with other de	partments, purch	asing	
		systems, purchase proced	are, Storekeeping, classification o	f stores as centra	alized	
		and decentralized with the	neir advantages, disadvantages and	application in a	actual	
		practice, Material Resourc				
UNI	T-IV	Quality Management				(08 Hours)
		•••	Circle, Quality Assurance, Tota	Quality and T		
		· · ·	Cher, Quanty Assurance, 10ta	Quanty and I		
T T T T		Kaizen,5'S',6 Sigma				(00 11
UNI	1-V	- 0	Control Need and importance. Sch	C .	•	(08 Hours)
			utilization. Gantt chart- Format an	nd method to pre	epare.	
		Critical ratio scheduling-n	ethod.			
UNI	T-VI	Recent Trends in IM				(08 Hours
			planning) - concept, features and a	1 .	1	

	features of MS Project. Logistics- concept need and benefits. Just in Time (JIT)-							
	concept and benefits. Supply chain management-concept and benefits.							
	ject Based Learning							
1.	Given the data, prepare the network diagram and determine critical path							
2.	Given the data, prepare the scheduling using Gantt chart							
3.	Perform value analysis for given case							
4.	Globalization in India							
5.	Different principals of management.							
6.	Various types of organization							
7.	Various forms of ownership							
8.	Capital Generation for an organization.							
9.	ABC Analysis. 8. Standard purchase							
10.	Material Resource Planning (MRP), Enterprise Resource Planning (ERP)							
*Stu	dents in a group of 3 to 4 shall complete any one project from the above list.							
Toy	Books/References							
1	CPM & PERT principles and Applications. L.S.Srinath.							
2	Modern Production Management. Buffa.							
3	Materials Management. N. Nair. iv. Industrial Engineering & Management. O. P. Khanna. v. Value Analysis. Mikes.							
4	Khanna. O.P., "Industrial Engineering & Management" Dhanpat Rai & Sons New Delhi.							
5	Banga T. R. and Sharma S.C. "Industrial Engineering & Management" Khanna Publication							
6	Saxena, S.C." Business Administration & Management" SahityaBhavan Agra							
7	Newman W.H., Warren E. K. and McGil A. R., "The process of Management" Prentice- Hall							
Sylla	bus for Unit Tests							
·	Test I Units I, II, and III							
Unit	Test II Units IV, V, and VI							

			Chemical Proces	s Simulation II				
Des	ignation:	Professional Core						
Pre-requisite Courses: Fundamentals ofComputer, Mechanical operations, Heat Transfer, Fluid Flow,								
Mass Transfer, Thermodynamics and Chemical reaction engineering.								
Tea	ching Scl	heme	Examination Sch	eme	Credits Allotted			
	ctical	: 02Hours/Week	TW	:25Marks				
			Practical/Oral	:25 Marks	Practical/Oral : 01			
			Total	: 50 Marks	Total Credits : 01			
Cou	urse Outc	omes:						
Aft	er comple	tion of the course stu	dents would be able	e to:				
1		a process flow diag						
2		simulation programs		t operations.				
3	Simulat	e reactors and estima	te parameters.					
4		and simulate heat exc						
5	Develop	a simulation model	for separation of bi	nary/ternary componen	ts.			
6	Apply a	ll fundamental know		ulation environment fo	or a given problem.			
		I	Topics (Covered				
UN	IT-I	VLE data estimati						
				•	ermal and isobaric conditions			
		1. Program/ simulation applying different activity Coefficient models						
		2. Estimation of binary interaction parameters						
UN	IT-II	Simulation of Sepa						
		3. Process, design of absorption/ Distillation column						
		4. Estimating HTU, NTU, HETP absorption column						
		5. Estimating design parameters of distillation column						
UNIT-III		Simulation of Reactors						
		Simulation of batch, semi-batch and continuous stirred reactors.						
		6.Estimating conversion/purity/selectivity in batch reactor						
UNIT-IV		7. Case study selecting any example						
UN	11-18	Simulation of Reactor + Separator unit Theoretical calculation for reactor separator unit, variable selection for design						
		Theoretical calculation for reactor separator unit, variable selection for design. 8. Optimization of the reactor + Separator unit.						
UN	IT-V	Application to Chemical Engineering						
UI	11-1	Solving real case studies in chemical engineering.						
		9. Simulation of any case study involving all unit operations and processes.						
		10. Optimizing the variables.						
UNIT-VI		Computational Flu		cs				
		Introduction to CFD approach, advantages of CFD, applications, equation structure						
		overview. Governing equations of fluid dynamics, mass, energy and momentum, boundary						
		conditions, time-averaged equations for turbulent Flow, partial differential equations on						
		CFD, elliptic, parabolic and hyperbolic equations.						
		11. Programs based on Fundamentals in CFD Programming.						
		12. Programs based on governing equations						
Ter	m Work							
Term work will consist of the programs/practical's listed above, out of which any eig								
programs/practical's are to be performed in laboratory by the students.								

Text Books/References:								
1	A. Finlayson, Introduction to chemical engineering computing. John Wiley & Sons, 2012							
2	W. L. Luyben, Process Modeling Simulation and Control for Chemical							
	Engineers, McGraw Hill, 1990.							
3	J. Haydary, Chemical Process Design and Simulation, Wiley, 2019.							
4	A. Jana, Amiya K. Chemical process modelling and computer simulation. PHI Learning							
	Pvt. Ltd. 2011.							
5.	D. Himmelblau, K.B. Bischoff, Process Analysis and Simulation, John Wiley & Sons,							
	1968							

PROJECT: STAGE-II

Designation: Professional Core

Pre-requisite Courses: Knowledge of chemistry, Material and energy balance calculations, Mass transfer, and Chemical reaction engineering, Equipment design, etc.

Teaching Se	cheme	Examination Scheme		Credits Allotted
Practical	: 04 Hours/Week	Term-work (TW)	: 100 Marks	TW/Oral : 06
Total	: 04 Hours/Week	Practical/Oral	: 100 Marks	Total Credits : 06
		Total	: 200 Marks	

Course Outcomes

- 1 Fabrication of the experimental setup/new system and/or purchase of standard components
- 2 Pilot run and/or validation of new system for its performance
- 3 Modifying the system if required to improve its performance
- 4 Detailed parametric studies of the modified system and analyzing the results
- 5 Writing technical report, research article and/or filing a patent

Course Contents

Students need to approach to the guide after guide allotment using standard procedure. Guide will elaborate the project to students and decide the objectives and the plan of work.

Minimum number of in-sem. project presentations: 03

Parameters for evaluation of project in University examination

Idea of Project/Topic, Technical content, Innovation, Experimentation/Model development/Software development/Simulation development, etc., Participation as an Individual, Research Potential, Project Hardware/Software, Fabrication/Model/Equipment development, Data Analysis, Attendance, Timely completion, Report writing, Presentation

Progress report card will be issued to each student to monitor the progress of work.

Assessment and progressive evaluation of the project will be done by the committee consisting of senior faculty members. The record of progressive evaluation shall be submitted in the department at the end of the semester and made available at time of university examination.