

BHARATI VIDYAPEETH (DEEMED TO BE UNIVERSITY), PUNE

Faculty of Engineering And Technology
M. Tech - Information Technology
New Syllabus

Bharati Vidyapeeth (Deemed to be University) Pune, India

College of Engineering, Pune

M. Tech (Information Technology) (2019 CBCS COURSE)

Program Curriculum

VISION OF THE UNIVERSITY

Social Transformation through Dynamic Education

MISSION OF THE UNIVERSITY

- To make available quality education in different areas of knowledge to the students as per their choice and inclination
- To offer education to the students in a conducive ambience created by enriched infrastructure! and academic facilities in its campuses.
- To bring education within the reach of rural, tribal and girl students by providing them substantive fee concessions and subsidized hostel and mess facilities
- To make available quality education to the students of rural, tribal and other deprived sections of the population

VISION OF THE INSTITUTE

To be World Class Institute for Social Transformation Through Dynamic Education.

MISSION OF THE INSTITUTE

- To provide quality technical education with advanced equipment, qualified faculty members, infrastructure to meet needs of profession and society.
- To provide an environment conducive to innovation, creativity, research and entrepreneurial leadership.
- To practice and promote professional ethics, transparency and accountability for social community, economic and environmental conditions.

VISION OF THE DEPARTMENT

To be a leading Programme, transforming students into skilled IT professionals.

MISSION OF THE DEPARTMENT

• Amplify the student's technical skills by conducting continuing education

programs, organizing and participating in various technical events.

- Provide comprehensive support in synchronization with industry to achieve professional and technological excellence.
- Provide an environment for effective social and ethical skills.

Proposed Structure of M.Tech Information Technology CBCS Pattern (2018 Course)

STRUCTURE & EXAMINATION PATTERN

MTech Information Technology

Total Marks: 500 Total Credits: 18

						1	otal Cr	eans: 18	•		
Subjects	Sch (Hr	ching neme rs) rs./ eek			Examination (Marks				S	mination cheme Credits)	Total Credits
	L	P	Theory	Unit Test	Attendance	Tutorial/ Assign ments	TW	Pract / Oral	TH	TW/PR/ OR	
Software Architecture	04	02	60	20	10	10	25	25	04	01	05
Machine Learning	04	02	60	20	10	10	25	25	04	01	05
Mobile Networks & Communication	04		60	20	10	10			04		04
Parallel Programming & Algorithms	04		60	20	10	10			04		04
Total	16	04	240	80	40	40	50	50	16	02	18

Teaching So	heme	Examination Scheme		Credit Allotted		
Theory : hrs/week	04	End Semester Examination	: 60 Marks	Theory :04		
Practical : (hrs/week)2	Continuous assessment	: 40 Marks	Practical: 01		
		Term Work:25 Marks		Total Credits: 05		
		Prat/Oral: 25 Marks				
The aim of the	ne course is t	o design a system to provide the	e solution to the e	xisting system		
Course Obj						
		in existing system.				
		lution by wisely designing the a	rchitecture.			
Course Pres						
		nowledge of				
1) Basic	knowledge o	of java programming.				
•••						
Course Out						
Students wi						
		in existing system				
		design proposed.	avatam			
		y suitable to build the proposed lesign pattern to design the arch				
		of solution with the requirement				
		hitecture to optimize the perform		-m		
•••	Cifferent are	intecture to optimize the perior	nance of the syste	2111		
UNIT-I	INTROD	UCTION TO SOFTWARE A	RCHITECTUR	E (Hours)		
	Introduction	on to Software Architecture, Ar	chitecture of Bus	iness 06		
	Cycle, sof	eture,				
	Documenti	ng software architectures, rece	nt trends in soft	ware		
	architectur	es.				
UNIT-II	DESIGN	(Hours)				
	Introducti	rtant 06				
	aspects during the design SRS, Cost, Security, Resources,					
	Compatib			of		
		Technology according to the requirement.				
	Technolog	gy according to the requirement.				

UN	IT-III	DESIGN PATTERNS	(Hours)
		Introduction to Design patterns, principles and expectations	06
		Types of design patterns Singleton, Factory, Adaptor, Facade,	
		Proxy, Iterator, Observer, Mediator, composite. Rules and	
		regulations to select design patterns.	
UN	IT-IV	TECHNOLOGIS USED IN MIDDLEWARE	(Hours)
		Types of Middleware, Application servers, Introduction to	06
		Java EE, Introduction to Java EE, JDBC, RPC, RMI, EJB	
		Architecture, Entity, Session, Message beans, XML, XSLT.	
		Specifications and characteristics of Middleware technologies.	
		Recent advances in Middleware technologies.	
UN	IT-V	N TIER ARCHITECTURE	(Hours)
		Introduction to tiers in Architecture, Types of Tiers , XML,	06
		Client side technologies HTML, DHTML, Java Applets,	
		ActiveX controls, DOM, AJAX. Client side technology in	
		multi-tier architectures Examples of three tier and n-tier	
		architectures, client side technologies.	
UN	IT-VI	SERVER SIDE TECHNOLOGY	(Hours)
		Multi-tier architectures, introduction to server side	06
		technologies: JSP, JSF, SOA, MVC. Java Servlets,	
		introduction to framework struts, spring.	
Ass	ignment l		
1)	_	n architecture to solve collision problem in Traffic Signaling S	•
2)		eneralized and specialized approach to simulate traffic signali	
<u>3)</u>	_	ent all types of driver to connect front end with back end using	modular approach.
<u>4)</u>	_	ent and maintain cookies in a structured relational database. ent data and page transfer using servlet.	
¬ 1	Imnlama		
<u>5)</u>	_		
6)	Impleme	ent library management system using JSP.	
	Impleme Impleme	ent library management system using JSP.	amework.
6) 7) 8)	Impleme Impleme	ent library management system using JSP.	amework.
6) 7) 8) Tex	Impleme Impleme	ent library management system using JSP.	amework.
6) 7) 8)	Impleme Impleme	ent library management system using JSP.	amework.
6) 7) 8) Tex	Impleme Implement Implement At Books:	ent library management system using JSP.	
6) 7) 8) Tex	Implement Implement Implement Books: Software Publishe	ent library management system using JSP. ent ent CRUD functionality using MVC architecture with struts fr Architecture in Practice, Second Edition By Len Bass, Paul Clem	ents, Rick Kazman

Ref	ference Books:						
1)	Software Architecture in Practice, Second Edition By Len Bass, Paul Clements, Rick Kazman						
	Publisher: Addison Wesley						
2)	Agile Software Development, Principles, Patterns, and Practices, Robert C. Martin, Pearson Education						
3)	Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions Gregor Hohpe, Bobby Woolf,						
	Publisher: Addison Wesley						
Syl	labus for Unit Test:						
Uni	it Test -1 Unit I ,II and III						
Uni	it Test -2 Unit IV, V and VI						

M.Tech (IT) Semester -	I Subject : Machine Learn	ing		
Teaching Scheme	Examination Scheme		Credit Allotted	
Theory : 04 hrs/week	End Semester Examination	: 60 Marks	Theory :04	
Practical: 02 Hrs	Continuous assessment	: 40 Marks	Practical : 01	
	Term Work:25 Marks			
	Prat/Oral: 25 Marks		Total Credits: 05	

- 1) Introduces fundamental concepts and methods for machine learning
- 2) Familiarize with basic learning algorithms and techniques and their applications

Course Prerequisites:

Students should be familiar with logic, elementary probability theory, elementary linear algebra, and multivariable calculus

Course Outcome:

.

- 1) Understand regression
- 2) Understand basic probability theory
- 3) Understand estimation and classification techniques
- 4). Understand Bayesian and Monto Carlo methods
- 5). Understand concepts of Lagrange multipliers and Clustering
- 6) Understand Hidden Markov Models

UNIT-I		(08 Hours)
	Introduction to Machine Learning: Types of Machine Learning, A simple problem.	
	Linear Regression: The ID case, Multidimensional inputs, Multidimensional outputs.	
	Non Linear Regression: Basis function regression, Over fitting and Regularization,	
	Artificial Neural Networks, K-Nearest Neighbors.	

	Quadratics: Optimizing a quadratic.	
UNIT-II		(08 Hours)
	Basic Probability Theory: Classical logic, Basic definitions and rules, Discrete random Variables, Binomial and Multinomial distributions, Mathematical expectations. Probability Density Functions(PDFs): Mathematical expectation, mean, and variance, Uniform distributions, Gaussian distributions: Diagonalization, Conditional Gaussian Distribution.	
UNIT-III		(08 Hours)
	Estimation: Learning a binomial distribution, Bayes' Rule, parameter estimation: MAP, ML, and Bayes' Estimates, Learning Gaussians, MAP nonlinear regression. Classification: Class Conditionals, Logistic Regression, Artificial Neural Networks, K-Nearest Neighbor Classification, generative vs. Discriminative models, Classification by LS Regression, Naïve Baye's: Discrete Input Features, Learning, Gradient Decsnt: Finite differences.	
UNIT-IV		(08 Hours)
	Cross Validation, Bayesian methods: Bayesian Regression, Hyperparameters, Bayesian model Selection. Monte Carlo Methods: Sampling Faussians, Importance Sampling, Markov Chain Monte Carlo (MCMC). Principal Components Analysis: The model and learning, Reconstruction, Properties of PCA, Whitening, Modelling, Probabilistic PCA.	
UNIT-V		(08 Hours)
	Lagrange Multipliers: Examples, Least-Squares PCA in one-dimension, Multiple constraints, Inequality constraints.	
	Clustering: K-means Clustering, K-medoids Clustering, Mixtures of Gaussians: Learning, Numerical issues, the Free Energy, proofs, Relation to K-means, Degeneracy. Determining the number of clusters.	
UNIT-VI		(08 Hours)
	Hidden Markov Models: Markov Models, Hidden Markov Models, Viterbi Algoriyhm, The Forward Algorithm,	
Assignmen	nt List:	
1)	To study and implement K-Nearest neighbor algoritm	
2)	Problems solving on Probability density functions and Gaussian distribution	on
3)	Solving problems related to classification and estimation	
4)	Solving problems related to Bayesian method and Monte Carlo methods	
5)	To study and implement K-means clustering	

6)	(Comparison of various Hidden Markov Models				
Tex	t Books:					
1)	Ÿ Kono	onenko, "Machine Learning And Data Mining: Introduction to Principles and Algorithms",				
	Horwo	od Publishing				
2)	Kevin Pa	trick Murphy, "Machine Learning: a Probabilistic Perspective", MIT Press				
	erence Bo					
1)	Tom Mit	chell, "Machine Learning", McGraw-Hill, 1997				
2)	Michael	Berry & Gordon Linoff, "Mastering Data Mining", John Wiley & Sons				
3)	Cios, W.	Pedrycz, R. Swiniarski, L. Kurgan, "Data Mining: A Knowledge DiscoveryK.				
	Approach", Springer					
Syll	abus for l	Unit Test:				
Uni	t Test -1	Unit I ,II and III				
Uni	t Test -2	Unit IV, V and VI				

Tanakina	Cohores	Evamination Calcuss		Cuadit A	1104404
Teaching S	scheme : 04	Examination Scheme End Semester Examination	Credit		:04
Theory nrs/week	: 04	End Semester Examination	: 60 Marks	Theory	:04
ars, ween					
		Continuous assessment	: 40 Marks	Total Cr	edits: 04
Course Ol	<u> </u>				
		ing of the principles behind the des	sign of wireless con	nmunication s	systems and
echnologie	s. erequisites				
		e knowledge of			
		g & communication system			
Course Oi		<u>√</u>			
	vill be able				
		cellular architecture.			
		tiple access schemes & IEEE80			
		logy channel interference in pat			
		nnology switching and traffic sy	rstem.		
	the GSM S		1		
		nnology HEPERLAN & Androi			(TT)
UNIT-I	Introdu	ction to Mobile Communication	on		(Hours)
	Cellular	mobile architecture overview	and cellular syste	m design,	08
	Frequen	cy management and channel a	ssignment, Frequ	ency reuse	
	channels	s, concepts of cell splitting, h	andover in cellul	ar system,	
	handoff	algorithms and dropped calls.			
UNIT-II	Multiple	A agass Cahamas			(Hauna)
UN11-11	_	e Access Schemes	orison of C/T/E/C	DMA	(Hours)
		FDMA, TDMA, CDMA, comp		DMA	08
		terminals signal separation and		C4-	
		ntages; IEEE 802.11 & 802.16 v	wireless standards	, system	
	architect	ure.			
UNIT-III	Propaga	ation Path Loss and Propagati	ion Models		(Hours)
		nel & Non-co-channel interfere		-channel	08
		nce areas in system, reduction of			
		t types of non-co channel interf			
		nterference and in turn improve		,	
UNIT-IV		ng and traffic		~ 11	(Hours)
		description, Special features for	_		08
	switchin	g systems, systems enhancemen	nt, resource alloca	tion and	

		mobility management.			
UNI	T-V	Practical Cellular Mobile system-GSM	(Hours)		
		Cellphone generations 1G, 2G, 3G, Standards for wireless	08		
		communication system UMTS etc; GSM architecture and			
		interfaces, GSM subsystems, mapping of GSM layers on to OSI			
		layers.CDMA: Major attributes IS-95 system architecture, air			
		interface, physical and logical channel and call processing.			
UNI	T-VI	Wireless Local Area Networks	(Hours)		
		Introduction, Types of WLANs, Hidden station problem,	08		
		HIPERLAN Type 1: HIPERLAN/1 MAC sublayer, HIPERLAN/1			
		CAC layer, HIPERLAN/1 physical layer. IEEE 802.11 WLAN			
		standards: IEEE 802.11 physical layer, IEEE 802.11 MAC			
		sublayer. IEEE 802.11 and HIPERLAN standards for 5 GHz band:			
		HIPERLAN/2 physical layer, HIPERLAN/2 data link control layer.			
		Bluetooth: Introduction, User Scenario, Architecture, protocol.			
		Introduction to Android Layers, android components, mapping			
		application to process. Android development basics. Hardware			
		tools, Software tools, Android SDK features			
Text	Books				
1)	Willia	am C.Y.Lee, "Mobile cellular Telecommunication", 2nd Ed. McGraw-	Hill Ÿ		
2)	Joche	n Schiller, "Mobile Communication" Pearson Education Ÿ			
3)	V. K.	Garg, J. E. Wilkes, "Principle and Application of GSM", Pearson Edu	cation		
Refe	rence	Books:			
1)	V. K.	Garg, "IS-95 CDMA &CDMA 2000", Pearson Education			
2)		Frank Ableson, Robi sen, Chris King, "Android IN ACTION", Third Edition, amtech Press			
		le Computing By Rajkamal (Oxford).			
,	_	· Unit Test:			
	Test -	Unit I ,II and III			
1					
Unit 2	Test -	Unit IV, V and VI			
4					

M.Tech (IT) Semest	er - I Subject: MOBILE NET	WORKS AND C	COMMUNICATION
Teaching Scheme	Examination Scheme		Credit Allotted
Theory: 04 hrs/week	End Semester Examination	: 60 Marks	Theory :04
	Continuous assessment	: 40 Marks	Total Credits : 04

To gain an understanding of the principles behind the design of wireless communication systems and technologies.

Course Prerequisites:

Students should have knowledge of

Computer Networking & communication system

Course Outcome:

- 1) Understand mobile cellular architecture.
- 2) Understand the multiple access schemes & IEEE802.11
- 3) Analyze the technology channel interference in path propagation.
- 4) Understand the technology switching and traffic system.
- 5) Analyze the GSM System.
- 6) Understand the technology HEPERLAN & Android system.

UNIT-I	Introduction to Mobile Communication	(Hours)
	Cellular mobile architecture overview and cellular system design,	08
	Frequency management and channel assignment, Frequency reuse	
	channels, concepts of cell splitting, handover in cellular system,	
	handoff algorithms and dropped calls.	
UNIT-II	Multiple Access Schemes	(Hours)
	SDMA, FDMA, TDMA, CDMA, comparison of S/T/F/CDMA	08
	based on terminals signal separation and advantages and	
	disadvantages; IEEE 802.11 & 802.16 wireless standards, System architecture.	
UNIT-III	Propagation Path Loss and Propagation Models	(Hours)
	Co-channel & Non-co-channel interference: Exploring co-channel	08
	interference areas in system, reduction of co channel interference,	
	Different types of non-co channel interferences, different ways to	
	reduce interference and in turn improve cell coverage.	
UNIT-IV	Switching and traffic	(Hours)

	General description, Special features for handling traffic, Small switching systems, systems enhancement, resource allocation and mobility management.	08				
UNIT	Practical Cellular Mobile system-GSM	(Hours)				
	Cellphone generations 1G, 2G, 3G, Standards for wireless communication system UMTS etc; GSM architecture and interfaces, GSM subsystems, mapping of GSM layers on to OSI layers. CDMA: Major attributes IS-95 system architecture, air interface, physical and logical channel and call processing.	08				
UNIT	Y-VI Wireless Local Area Networks	(Hours)				
	Introduction, Types of WLANs, Hidden station problem, HIPERLAN Type 1: HIPERLAN/1 MAC sublayer, HIPERLAN/1 CAC layer, HIPERLAN/1 physical layer. IEEE 802.11 WLAN standards: IEEE 802.11 physical layer, IEEE 802.11 MAC sublayer. IEEE 802.11 and HIPERLAN standards for 5 GHz band: HIPERLAN/2 physical layer, HIPERLAN /2 data link control layer. Bluetooth: Introduction, User Scenario, Architecture, protocol. Introduction to Android Layers, android components, mapping application to process. Android development basics. Hardware tools, Software tools, Android SDK features	08				
Text l	Books:					
1)	William C.Y.Lee, "Mobile cellular Telecommunication", 2nd Ed. McGraw-	-Hill Ÿ				
3)	Jochen Schiller, "Mobile Communication" Pearson Education Ÿ V. K. Garg, J. E. Wilkes, "Principle and Application of GSM", Pearson Edu	cation				
Refer	ence Books:					
1)	V. K. Garg, "IS-95 CDMA &CDMA 2000", Pearson Education					
2)	W. Frank Ableson, Robi sen, Chris King, "Android IN ACTION", Third Edition, Dreamtech Press					
3)	Mobile Computing By Rajkamal (Oxford).					
	ous for Unit Test: Fest -1 Unit I ,II and III					
	Fest -2 Unit IV, V and VI					

Proposed Structure of M.Tech Information Technology CBCS Pattern (2015-16)

STRUCTURE & EXAMINATION PATTERN

MTech - Information Technology

Semester II Total Duration: 20 Hrs/Week

Total Marks: 500 Total Credits: 18

Subjects Teaching Scheme (Hrs) Hrs./Week		ubjects Scheme (Marks)					Examination Scheme (Credits)		Total Credits		
	L	P	Theory	Unit Test	Attendance	Tutorial/ assignme nts	T W	Pra ct/ Ora l	ТН	TW/ PR/ OR	
Research Foundation	04		60	20	10	10			04		04
Information Retrieval	04	02	60	20	10	10	25	25	04	01	05
Real Time Systems	04		60	20	10	10			04		04
Information Security	04	02	60	20	10	10	25	25	04	01	05
Total	16	04	240	80	40	40	50	50	16	02	18

M.Tech IT Semester II Subject: Research Foundation					
Teaching Scheme	Examination Scheme		Credit Allotted		
Theory: 04 hrs/week	End Semester Examination	: 60 Marks	Theory : 04		
	Continuous assessment	: 40 Marks	Total Credits: 04		

- 1) Assist students in planning and carrying out research projects, further research oriented studies or jobs
- 2) The students are exposed to the principles, procedures and techniques of implementing a research finding.
- 3) Students involve with finding out the literature using information technology / computer technology and with using the tools for data analysis in various sectors, and writing the reviews, papers, reports and thesis.

Course Prerequisites:

Students should have knowledge of

- 1) Problem definition
- 2) Project Preparation and publications
- 3) Mathematical and Statistical Analysis

Course Outcome:

- 1) Define and describe the research, research process and research methods.
- 2) Understand and apply research methods including design, data analysis, and interpretation.
- 3) Project Report, and Research Paper writing

UNIT-I	Research Idea	(Hours)
	Introduction to research. Research: objectives, motivation, types, approaches, methods and methodology. Research and scientific method.	08
UNIT-II	Research Processes	(Hours)
	How research is done, research processes, research criteria, research problem definition, problem selection, need of defining the problem, techniques involved in defining a problem.	08
UNIT-III	Research Design	(Hours)
	Research design: idea, why research designs, characteristics of design, types of designs, experimental design.	08
UNIT-IV	Novelty	(Hours)
	Novelty and Originality in Research: Resources, skills, time management, role of supervisor and research scholar, interaction with subject experts.	06
UNIT-V	Paper, Thesis and Report Writing	(Hours)
	Thesis Writing: Title, Abstract, Introduction, Literature review / previous works, Methodology, Result / Data analysis, Comparisons	08

	with earlier works, Conclusion, Future Scopes and References (IEEE /	
	Springer / ACM / Elsevier formats).	
	Importance of literature review, source of literature: books, journals,	
	proceedings, thesis and dissertations, unpublished documents.	
	On-line Searching: Database, SciFinder, Scopus, Science Direct,	
	Searching research articles, Citation Index, Impact Factor, H-index.	
UNI	T-VI Tools	(Hours)
	Analytical tools, Introduction to data analysis, linear data and non-	10
	linear data, exponential type data, logarithmic type data, power	
	function data and polynomials of different orders.	
	Plotting and fitting of linear, Non-linear, Gaussian, Polynomial, and	
	Sigmoidal type data.	
	Quantitative Techniques: Steps of quantitative analysis, reliability of	
	the data, errors classification, accuracy, precision, statistical errors.	
	LaTeX: Writing scientific report, research report, revision, writing	
	project proposal, paper writing for international journals, conference	
	presentation, Slides preparation, pictures, graphs and citation styles.	
Assi	gnment List:	
1)	Briefly describe the different steps involved in a research process.	
	What do you mean by research? Explain its significance in modern times.	
2)	Write short notes on:	
·	Design of the research project;	
	Ex post facto research;	
	Motivation in research;	
	Objectives of research;	
	Criteria of good research;	
	Research and scientific method.	
3)	Describe the different types of research, clearly pointing out the difference	e between an
,	experiment and a survey.	
4)	What is the necessity of defining a research problem? Explain.	
5)	Explain the meaning of the following in context of Research design:	
·	(a) Extraneous variables;	
	(b) Confounded relationship;	
	(c) Research hypothesis;	
	(d) Experimental and Control groups;	
	(e) Treatments.	
6)	Distinguish between an experiment and survey. Explain fully the survey is	nethod of
- /	research.	
7)		
7)	Write short notes on the following: (a) Cross tabulation;	
	(b) Discriminant analysis;	
	(c) Coefficient of contingency; (d) Multipolitical important	
	(d) Multicollinearity;	
0)	(e) Partial association between two attributes.	
8)	5. Distinguish between the following:	

(a) Statistic and parameter; (b) Confidence level and significance level; (c) Random sampling and non-random sampling; (d) Sampling of attributes and sampling of variables; (e) Point estimate and interval estimation. 7. 8. In a sample of 400 people, 172 were males. Estimate the population proportion at 95% confidence level. (a) 500 articles were selected at random out of a batch containing 10000 articles and 30 9) were found defective. How many defective articles would you reasonably expect to find in the whole batch? (b) In a sample of 400 people, 172 were males. Estimate the population proportion at 95% confidence level. "We can teach methods of analysis, yet any extensive research... requires something 10 equally important: an organisation or synthesis which provides the essential structure into which the pieces of analysis fit." Examine this statement and show how a good research report may be prepared. **Text Books:** C. R. Kothari, Research Methodology Methods and Techniques, 2nd. ed. New Delhi: New Age International Publishers, 2009. P. Oliver, Writing Your Thesis, New Delhi: Vistaar Publications, 2004. 2) **Reference Books:** R. Panneerselvam, Research Methodology, New Delhi: PHI, 2005. 2) F. Mittelbach and M. Goossens, The LATEX Companion, 2nd. ed. Addison Wesley, 2004. J. W. Creswell, Research Design: Qualitative, Quantitative, and Mixed Methods **3**) Approaches, 3nd. ed. Sage Publications, 2008. Kumar, Research Methodology: A Step by Step Guide for Beginners, 2nd. ed. Indian: PE, 4) 2005. B. C. Nakra and K. K. Chaudhry, Instrumentation, Measurement and Analysis, 2nd. ed. 5) New Delhi: TMH publishing Co. Ltd., 2005. Gregory, Ethics in Research, Continuum, 2005. **6**) **Syllabus for Unit Test: Unit Test -1** Unit I, II and III Unit Test -2 Unit IV, V and VI

M.Tech IT Semester II	Subject : Information Retr	rieval		
Teaching Scheme	Examination Scheme	Credit Allotted		
Theory : 04 hrs/week	End Semester Examination Marks	60	Theory :04	
Practical :02	Continuous assessment Marks	40	Practical : 01	
	Term Work:25 Marks			
	Prat/Oral: 25 Marks		Total Credits: 05	

- 1) To provide students with an overview of the main principles and methods underlying the domain of Information Retrieval.
- 2) To address more recent developments in IR such as collaborative filtering and Latent Semantic Indexing.

Course Prerequisites:

Students should have knowledge of

- 1) Basic basic information retrieval techniques.
- 2) Data Structures and Algorithm Analysis

Course Outcome:

- 1) Understand the impact on web of information retrieval.
- 2)) Understand basic information retrieval models.
- 3) understand experimental evaluation of information retrieval
- 4) understand information retrieval implementation in search engines
- 5) understand language-model based retrieval
- 6) understand Information Extraction and Integration

UNIT-I	Introduction	(Hours)
	Goals and history of IR. IR Basics: inverted index, query and	08
	document representations, boolean retrieval, simple tf/idf and other	
	ranking schemes.	
	The impact of the web on IR. Information behavior, browsing vs seeking, types of search	
UNIT-II	Basic IR Models	(Hours)
	Boolean and vector-space retrieval models; ranked retrieval; text-	08
	similarity metrics; TF-IDF (term frequency/inverse document	
	frequency) weighting; cosine similarity.	
	Basic Tokenizing, Indexing, and Implementation of Vector-Space Retrieval:	
	Simple tokenizing, stop-word removal, and stemming; inverted	
	indices; efficient processing with sparse vectors; Java	
	implementation.	

UNI	T-III	Experimental Evaluation of IR	(Hours)		
		Performance metrics: recall, precision, and F-measure; Evaluations on	08		
		benchmark text collections.			
		Query Operations and Languages:			
	Relevance feedback; Query expansion; Query languages.				
	Text Representation:				
	Word statistics; Zipf's law; Porter stemmer; morphology; index term				
		selection; using thesauri. Metadata and markup languages (SGML, HTML, XML).			
UNI	T-IV	Web Search	(Hours)		
		Search engines; spidering; metacrawlers; directed spidering; link	08		
		analysis (e.g. hubs and authorities, Google PageRank); shopping			
		agents.			
		Text Categorization : Categorization algorithms: Rocchio, nearest			
		neighbor, and naive Bayes. Applications to information filtering and			
		organization.			
UNI	T-V	Language-Model Based Retrieval	(Hours)		
		Using naive Bayes text classification for ad hoc retrieval. Improved	08		
		smoothing for document retrieval.			
		Text Clustering : Clustering algorithms: agglomerative clustering; k-			
		means; expectation maximization (EM). Applications to web search			
		and information organization.			
UNI	T-VI	Recommender Systems	(Hours)		
		Collaborative filtering and content-based recommendation of	08		
		documents and products.			
		Information Extraction and Integration:			
		Extracting data from text; semantic web; collecting and integrating			
		specialized information on the web.			
Assi	gnmen	-	<u> </u>		
1)		impact of Information retrieval on web			
2)	Write	a program to implement TF-IDF to rank data			
3)	Write a program to normalize the data				
4)		a program to analyze indexer			
5)		a program to analyze recall and F-measure top 3 popular search engines.			
6)		te working of open source crawlers.			
7)	_	ment naïve bayes algorithm to retrieve the data			
8) 9)		a program to implement k-means algorithm. a program to design dynamic forms for collaborative filtering			
7)	write	a program to design dynamic forms for conaborative ilitering			

10)	Write a pr	ogram to to collect feedback using various recommendation techniques			
Text	t Books:				
1)		tion to Information Retrieval, by C. Manning, P. Raghavan, and H. Schütze. ge University Press, 2008			
Refe	erence Boo	oks:			
1)	Search Engines: Information Retrieval in Practice by W. Bruce Croft, Donald Metzler, and Trevor Strohman				
2)		tion to Information Retrieval, Christopher D. Manning, Prabhakar Raghavan, rich Schutze, Cambridge University Press. 2008			
Sylla	abus for U	nit Test:			
Unit	t Test -1	Unit I ,II and III			
Unit	t Test -2	Unit IV, V and VI			

Teaching Scheme	Examination Scheme	Credit Allotted
Theory : 04 hrs/w	reek End Semester Examination : 60 Marks	Theory :04
	Continuous assessment : 40 Marks	
		Total Credits: 04

- 1) The aim of the course is to introduce the student to the theory of formal verification methods and techniques used for real time systems.
- 2) This course provides a comprehensive introduction to understand the underlying principles, techniques and approaches which constitute a coherent body of knowledge in Real Time System.

Course Prerequisites:

Students should have knowledge of

- 1)Basic understanding of C.
- 2) Basic understanding of Computer Architectures.
- 3) Basic understanding of Operating Systems

Course Outcome: Real time system is one of class of f complex systems whose performance must be analyzed at the earlier phases of development. The methods and techniques in this course are widely used now a day in industries for these verifications of Real Time System. The students would have then a strong background of modeling, simulation and verification..

- 1) Clearly differentiate the different issues that arise in soft and hard real-time systems. Explain the various concepts of time that arise in real-time systems.
- 2) Understand basic multi-task scheduling algorithms and approaches for scheduling.
- 3) Understand basic for periodic, aperiodic, and sporadic tasks as well as understand the impact of the latter two on scheduling.
- 4) Able to understand the desired language characteristics of real time programming languages.
- **5**) Clearly differentiate the Real Time Vs Gerenal Purpose Databases.
- **6**)Understand the real time communication.protocols.

UNIT-I	Introduction	(08 Hours)
	Real time Applications, Hard Versus Soft Real Time Systems, A reference model of Real Time Systems, Issues in Real-Time Computing, Structure of	
	real time systems, Task Classes, characterizing Real -Time Systems:	
	Performance Measures for Real Time Systems., Estimating Program Run	
	Times	
UNIT-II	Real Time Scheduling	(08 Hours)
	Approaches to Real Time Scheduling: Clock Driven Approach, Weighted	
	Round Robin Approach, Priority Driven Approach	
	Scheduling: Introduction, Classical Uniprocessor Scheduling - Rate	
	Monotonic scheduling Algorithm, Preemptive Earliest Deadline First(EDF)	
	Algorithm	
	Uniprocessor scheduling of IRIS tasks-Identical Linear Reward	
	Functions, Nonidentical Reward Functions, 0/1 Reward Functions, Identical	

		Concave Reward Function, Non identical Concave Reward Function,	
UN	IT-III	Task Assignment	(08 Hours)
		Utilization Balancing Algorithm, A Next – Fit Algorithm for RM Scheduling, A Bin – Packing Assignment Algorithm for EDF, A Myopic Offline Scheduling (MOS) Algorithm, The Buddy Startegy, Assignment and Precedence Conditions.	, , ,
UN	IT-IV	Programming Languages and Tools	(08 Hours)
		Introduction, Desired language characteristics, Data Typing, Control Structures, Facilitating Hierarchical Decomposition, Packages, Run Time Error Handling, Multitasking, Task Scheduling, Timing specifications, Experimental Languages: Flex, Euclid Run Time Support: Compiler, Linker, Debuuger, Kernel	
UN	IT-V	Real Time Databases	(08 Hours)
		Introduction,Real Time Vs Gerenal – Purpose Databases,Main memory databases,Transaction Priorities,Transaction Aborts,Concurrency Control Issues,Disk Scheduling Algorithm,A Two-Phase Approach to improve predictability,Mainaining serilalisation Consistency,Databases for Hard real Time systems.	
UN	IT-VI	T-VI Real Time Communication	
		Introduction, Model Of Real Time Communication, Priority based Service Disciplines for switched network, Weighted Round Robin service disciplies, Medium Access control protocols of Broadcast networks, Real Time Protocols, Communication in multicomputer systems	
Tex	t Books	<u> </u>	
1)	C.M.	Krishna, Kang G.Shin "Real Time Systems", Tata McGraw Hill Edition	
2)	Jane W	7.S.Liu,"Real Time Systems" Pearson Educatio	
Ref	erence	Books:	
1)		ime Systems: Theory and Practice Kindle Edition by Rajib Mall	
		r Unit Test:	
UIII	t Test -1 t Test -2	,	

M.Tech IT Semester II Subject :Information Security						
Teaching Scheme Examination Scheme Credit Allotted						
Theory: 04 Hrs/week	End Semester Examination	: 60 Marks	Theory: 04			
Practical :02 Hrs/week	Continuous assessment	: 40 Marks	Practical: 01			
	Term Work	: 25 Marks	Total Credits:05			
	Prat/Oral 25 Marks	:				

• Discuss various administrative, technical, governance, regularity and policy aspects of Information Security Management.

 Provide hands on approaches will be discussed to better understand and to devise strategies related to security policy.

Course Prerequisites:

Students should have knowledge of

1 Fundamentals of Telecommunication and computer networks.

Course Outcome:

- 1) Understand mathematical formulation in security algorithms.
- 2) Understand aspect of information security management including planning, process, policy, procedure and security model as well as hardware and software technologies to safeguard organizational assets.
- 3) develop skills of security management progression within an organization.
- 4) Perform email and graphic image recovery as well as investigations.
- 5) Implement cryptography algorithms.
- **6)** Learn business continuity planning concepts.

UNIT-I	MATHEMATICAL FOUNDATIONS OF INFORMATION SECURITY:	(6 Hours)
	Topics in elementary number theory: O and Ω notations ,Euclidean algorithm ,Congruence's, Euler's phi function , Fermat's Little Theorem , Chinese Remainder Theorem , Applications to factoring ,finite fields , quadratic residues and reciprocity: Quadratic residues ,Legendre symbol , Jacobi symbol. Simple Cryptosystems: Enciphering Matrices, Encryption Schemes, Symmetric and, Asymmetric Cryptosystems, Cryptanalysis, Block ciphers, Use of Block Ciphers, Multiple Encryption, Stream Ciphers, Affine cipher, Vigenere, Hill, and Permutation Cipher, Secure Cryptosystem.	
UNIT-II	SECURITY ELEMENTS:	(6 Hours)
	Authorization and Authentication - types, policies and techniques - Security certification - Security monitoring and Auditing - Security Requirements Specifications - Security Polices and Procedures, Firewalls, IDS, Log Files, Honey Pots .Access control, Trusted Computing and multilevel security - Security models, Trusted Systems, Software security issues, Physical and infrastructure security, Human factors – Security awareness, training, Email and Internet use policies, Third Party Development - Intellectual Property Issues.	
UNIT-III	INFORMATION SECURITY POLICIES: INDUSTRIES	(6 Hours)
UN11-111	PERSPECTIVE:	(o Hours)
	Introduction to Information Security Policies, About Policies, why Policies are Important, When policies should be developed, How Policy should be developed - Policy needs – Identify what and from	

	whom it is being protected, Data security consideration, Backups, Archival storage and disposal of data - Intellectual Property rights and Policies – Incident Response and Forensics - Management Responsibilities – Role of Information Security Department.	
UNIT-IV	SECURITY THREATS:	(6 Hours)
	Sources of security threats- Motives - Target Assets and vulnerabilities - Consequences of threats- E-mail threats - Web-threats - Intruders and Hackers, Insider threats, Cyber crime Security Threat Management: Risk Assessment - Forensic Analysis - Security threat correlation - Threat awareness - Vulnerability sources and assessment- Vulnerability assessment tools -Threat identification - Threat Analysis - Threat Modeling - Model for	
	Information Security Planning.	
	·	
UNIT-V	PUBLIC KEY CRYPTOSYSTEMS:	(6 Hours)
	The idea of public key cryptography, RSA Cryptosystem , Bit security of RSA , ElGamal Encryption , Discrete Logarithm , Knapsack problem , Zero-Knowledge Protocols . Primality and Factoring: Pseudo primes , the rho (γ) method , Format factorization and factor bases ,the continued fraction method , the quadratic seieve method. Number Theory and Algebraic Geometry: Elliptic curves, basic facts , elliptic curve cryptosystems , elliptic curve primality test ,elliptic curve factorization.	
UNIT-VI	AUDITING AND BUSINESS CONTINUITY PLANNING	(6 Hours)
	: Introduction to information security audit and principles of audit. Business continuity planning and disaster recovery. Case study: 9/11 tragedy. Backup and recovery techniques for applications and storage. Computer forensics: techniques and tools. Forensic tools VMware,Security testing tool BackTrack, Audit Tools: NESSUS and NMAP. Information Security Standards and Compliance: Overview of ISO 17799 Standard. Legal and Ethical issues.	
Assignment	List:	

Assignment List:

- 1. Assume a web-based system that has a state-less front-end web server (which just processes requests as it is with no state being tracked), an application engine (such as a Java servlet engine) that receives requests forwarded by the front-end, and a database that is used store/retrieve/manage data by the application engine. The application engine hosts application for a bank. The web-based system allows for a user to carry out online transactions, online viewing of accounts as well as other common tasks.
 - (a) What types of logging mechanisms should be used for the front-end, the application engine, and for the database in order to audit the requests received, their processing, and the privilege modes/user ids in which requests are processed.
 - (b) What auditing should such a system support?

- Pretend you've just seen a new type of malware that places the malicious code in an audio file, by using different frequencies to correspond to different instructions. Existing vulnerabilities are used to get access to the system and install a small interpreter that reads the infected audio files and executes them. Assume that you are unable to detect/prevent the interpreter (and that it doesn't do anything harmful by itself anyway) your job is to detect or prevent it from executing malicious audio files.(a) List one or more ways you could *detect* an infected audio file. Provide a brief (one
 - (a) List one or more ways you could *detect* an infected audio file. Provide a brief (one paragraph) description of each approach.
- **3.** Write a program to perform substitution ciphers to encrypt the explain text to Caesar cipher and to decrypt it back to plain text.
- **4.** Write a program to generate Symmetric Keys for the following Cipher algorithms DES, AES, Blowfish, TripleDES.
- **5.** Write a program to encrypt input string by using SecretKey of the following algorithms, and then decrypt the encrypted string and compare the decrypted string with the input string. Use the following algorithms for encryption and decryption:

a.RSA

b.AES

c.DSA

- **6.** Write a program to perform transposition ciphers to encrypt the plain text to cipher and to decrypt it back to plain text using Simple Columnar technique.
- 7. Assignment based on the presentation on either of following topics:

ISO 17799 Standard

NESSUS and NMAP Audit Tools

ElGamal Encryption

Asymmetric Cryptosystems

8. Case study on secure configuration of Email Server.

Text Books:

- 1) Neal Koblitz, "A Course in Number Theory and Cryptography", 2nd Edition, Springer, 2002.
- 2) Johannes A. Buchman, "Introduction to Cryptography", 2nd Edition, Springer, 2004.
- 3) Serge Vaudenay, "Classical Introduction to Cryptography Applications for Communication Security", Springer, 2006.
- 4) Victor Shoup, "A Computational Introduction to Number Theory and Algebra", Cambridge University Press, 2005.
- 5) William Stallings and Lawrie Brown, "Computer Security: Principles and Practice", Prentice Hall, 2008.
- Thomas Calabres and Tom Calabrese, "Information Security Intelligence: Cryptographic Principles & Application", Thomson Delmar Learning, 2004.

Reference Books:

- 1) Nina Godbole, Information Systems Security-Security Management, Metrics, Frameworks and Best Practices, Wiley, 2009
- 2) Information Security Policies, Procedures, and Standards: Guidelines for Effective

	Information Security Management (Paperback) Auerbach, 1st edition, 2001
3)	Neal Koblitz, "A Course in Number Theory and Cryptography", 2 nd
	Edition, Springer, 2002.
4)	Swiderski, Frank and Syndex, "Threat Modeling", Microsoft Press, 2004.
Sylla	abus for Unit Test:
Unit	Test -1 Unit I ,II and III
Unit	Test -2 Unit IV, V and VI

Proposed Structure of M.Tech Information Technology CBCS Pattern (2015-16)

STRUCTURE & EXAMINATION PATTERN

MTech - Information Technology

Total Marks: 475 Total Credits: 40

Subject	Sch (H	ching eme (rs) Week		Examination Scheme					Examinat ion Scheme (Credits)		Total Credits
	L	P	The ory	Unit Test	Attenda nce	Tutori al/assi gnmen ts	TW	Pract/ Oral	T H	TW/ PR/ OR	
Elective –I	04	02	60	20	10	10	25	25	04	01	05
Elective –II	04	02	60	20	10	10	25	25	04	01	05
Self-Study Paper-I	04		60	20	10	10	-	-	04	-	04
Dissertation Stage –I	-	07	-	-			25			21	21
Seminar	-	05	-	-			25	25	-	05	05
Total	12	16	180	60	30	30	100	75	12	28	40

Elective – I	Elective - II
Natural Language Processing & Understanding	Bio-informatics
 Computer Forensics & Cyber Laws 	 Advanced Computer Architecture
Advanced MIS	 Usability Engineering
 Wireless Networks 	 Advanced Database Management
 Data Warehousing & E-Commerce 	 Advanced Operating System

M.Tech IT Semester III ELECTIVE I: Natural Language Processing And Understanding						
Teaching Scheme	Examination Scheme	Credit Allotted				
Theory: 04 hrs/week	End Semester Examination	: 60 Marks	Theory :04			
Practical: 02 Hrs	Continuous assessment	: 40 Marks	Practical : 01			
	Term Work	:25 Marks				
	Prat/Oral	: 25 Marks	Total Credits: 05			

- 1. To understand natural language processing and to learn how to apply basic algorithms in this field.
- 2. To conceive basics of knowledge representation, inference, and relations to the artificial intelligence.
- **3.** To get acquainted with the algorithmic description of the main language levels: morphology, syntax, semantics, and pragmatics, as well as the resources of natural language

Course Prerequisites:

Students should have knowledge of working of compiler phases

Course Outcome:

- 1. Evaluate language technology components.
- 2. Understand various parsing methodologies.
- 3. Understand various language models and relate them in probability perspective.
- **4.** Map and solve the language parsing problem with dynamic programming.
- 5. Understand machine learning techniques and can assess which ones are suitable for a given problem.

UNIT-I	Introduction and Overview:	(08 Hours)
	Introduction, Overview and Linguistics, Grammars and Languages, Basic Parsing	
	Techniques, Semantic analysis and Representation Structures, Natural	
	Language Generation, Natural Language Systems, What is Natural Language	
	Processing ?, Ambiguity and Uncertainty in language.	
UNIT-II	Parsing and CFG:	(08 Hours)
	String Edit Distance and Alignment:	
	Key algorithmic tool: dynamic programming, First a simple example, its use in optimal	
	alignment of sequences. String edit operations, edit distance, examples of use	
	in spelling correction, machine translation.	
	Context Free Grammars:	
	Constituency, CFG definition, use and limitations. Chomsky Normal Form.	
	Top-down parsing; Bottom-Up Parsing, and the Problems with each. Non-probabilistic	
	model.	
	Parsing:	
	Efficient CFG parsing with CYK, another dynamic programming algorithm.	
	Designing a little grammar and parsing with it on some test data.	

UNIT	`-III	Information Theory:	(08 Hours)		
		What is information? Measuring it in bits. Entropy, cross-entropy, information			
		gain. Its application to some language phenomena.			
		Language modeling and Naive Bayes:			
		Probabilistic Language modeling and its applications. Markov models. Estimating the			
		Probability of a Word, and Smoothing. Generative models of language and their Application.			
UNIT	-IV	Hidden Markov Models :	(08 Hours)		
		Part of Speech Tagging and Hidden Markov Models:			
		The concept of Parts-of-speech, Examples, usage. The Penn Treebank and Brown Corpus. Probabilistic (weighted) finite state automata. Hidden Markov models			
		(HMMs), definition and use.			
		Viterbi Algorithm for Finding Most Likely HMM Path:			
		Dynamic programming with Hidden Markov Models, and its use for part-of-speech			
		tagging, Chinese Word Segmentation, Prosody, information extraction, Weighted Context Free Grammars. Weighted CYK. Pruning and Beam Search.			
UNIT	T-V	Classifiers and Models:	(08 Hours)		
		Maximum Entropy:			
		The maximum entropy principle, and its relation to maximum likelihood. The need in			
		NLP to integrate many pieces of weak evidence. Maximum entropy classifiers and their			
		application to document classification, sentence segmentation, and other language			
		tasks.			
		Maximum Entropy Markov Models & Conditional Random Fields:			
		Part-of-speech tagging, Noun-phrase segmentation and information extraction models that combine maximum entropy and finite-state machines. State-of-the-art			
		models for NLP.			
INITT	1 17T		(00		
UNIT	- V I	Machine Translation:	(08 Hours)		
		Probabilistic models for Translating any Language into English. Alignment,			
		translation, Language generation.			
Fowt I	Books:				
lext I		sky, Dan and Martin, James, Speech and Language Processing, Prentice Hall.			
•	Juluis	my, Dan and Flattin, James, Speech and Danguage 1 100055111g, 1 1011100 11an.			
Refer	ence I	Books:			
•	Allen,	James, Natural Language Understanding, Second Edition, Benjamin/Cumming, 1995.			
2.	Charni	ack, Eugene, Statistical Language Learning, MIT Press, 1993.			
	Manning, Christopher and Heinrich, Schutze, Foundations of Statistical Natural Language Processing, MIT Press, 1999.				

4.	Radford, Andı	rew et. al., Linguistics, an Introduction, Cambridge University Press, 1999.			
	Assignment lis	st:			
1.	Implement par	t of a noisy-channel model for spelling correction.			
2.	Write regular e	expressions that extract phone numbers and regular expressions that extract email addresses.			
3.	Using Naïve B	ayes algorithm classify selected movie review as positive or negative			
4.	Build a maxim	um entropy Markov model (MEMM) for identifying person names in newswire text.			
5.	Implement two translation models, IBM model 1 and IBM model 2, and apply these models to predict English word alignments.				
Syll	labus for Unit T	est:			
Uni	it Test -1	Unit I ,II and III			
Uni	it Test -2	Unit IV, V and VI			

M.Tech IT Semester III Subject: Elective - I Advanced MIS					
Teaching Scheme	Examination Scheme		Credit Allotted		
Theory: 04 hrs/week	End Semester Examination	: 60 Marks	Theory: 04		
Practical: 02 Hrs	Continuous assessment	: 40 Marks	Practical : 01		
	Term Work	: 25 Marks			
	Prat/Oral	: 25 Marks	Total Credits: 05		

- 1) Explain the changing organizational environment and the use of information technology to manage contemporary organizations
- 2) Identify the business impacts of business and social networking
- 3) Explain the technological foundations of information systems, i.e., hardware, software and telecommunications

Course Prerequisites:

Students should have knowledge of

- 1) Information System Management
- 2) System Analysis and design
- 3) Management information system

Course Outcome:

- 1) Explain the organizational context of information systems, including decision making and information processing concepts
- 2) Identify, conceptualize, and develop solutions to prepare conceptual design report
- 3) Based on conceptual system design the student should able to prepare detailed system design alongwith technological foundations of information systems, i.e., hardware, software, information processing.
- **4**). To understand implementation evaluation of system and pitfalls in MIS.
- 5). Identify applications of MIS in manufacturing sector.
- **6**)Understand design of business systems using contemporary tools.

UNIT-I	Introduction:	(08 Hours)
	Foundation of Information System:	
	Introduction to Information System and MIS, Decision support and decision	
	making systems, systems approach, the systems view of business, MIS organization	
	within company, Management information and the systems approach.	
	Information Technology:	
	A manager's overview, managerial overviews, computer hardware & software,	
	DBMS, RDBMS and Telecommunication.	
UNIT-II	Conceptual System Design:	(08 Hours)
	Define the problems, set systems objective, establish system constraints,	
	determine information needs, determine information sources, develop	
	alternative conceptual design and select one document ,the system concept, prepare	

	the conceptual design report.		
UNIT-	II Detailed System Design :	(08 Hours)	
	Inform and involve the organization, aim of detailed design, project management of MIS detailed design, identify dominant and trade of criteria, define the sub systems, sketch the detailed operating sub systems and information flow, determine the degree of automation of each operation, inform and involve the organization again, inputs outputs and processing, early system testing, software, hardware and tools propose and organization to operate the system, document the detailed design, revisit the manager user.		
UNIT-I	V Implementation Evaluation and Maintenance of the MIS:	(08 Hours)	
	Plan the implementation, acquire floor space and plan space layouts, organize for implementation, develop procedures for implementation, train the operating personnel, computer related acquisitions, develop forms for data collection and information dissemination, develop the files, test the system, cut-over, document the system, evaluate the MIS control and maintain the system. Pitfalls in MIS development.		
UNIT-	Advanced Concepts in Information Systems: Enterprise Resources Management(ERP), Supply Chain Management, CRM, Procurement Management System. Applications of MIS in Manufacturing sector, Service sector	(08 Hours)	
UNIT-	Designing of business systems: Design of business systems using contemporary tools and methods such as SQL, CASE tools, OOD tools, etc. Advanced Case Studies in MIS.	(08 Hours)	
	ooks/Referemnce Books:		
1)	Kenneth C. Laudon, "Management Information Systems", Eighth Edition, PHIŸ		
2) Ja	mes O'Brien and George Marakas, "Management Information Systems		
3) Ef	y Oz, "Management Information Systems", Course TechEffy		
Assigni	ment List :		
	troduction to MIS		
•	Generating conceptual system design report		
2) G			
	se study on detailed system design based on conceptual system		
3) Ca	nse study on detailed system design based on conceptual system replementation ,evaluation and maintainance of MIS.		

5)	Analysis of pitfalls in MIS development		
6)	Case study of advanced concepts in information system.		
7)	To study applications of MIS in service sector.		
8)	Design of business system using contepoarary tools and methods such as SQL.		
9)	Study of CASE tools and OOD tools.		
10	Case study of Isoftware used for building information system.		
Syll	Syllabus for Unit Test:		
Uni	it Test -1 Unit I ,II and III		
Uni	it Test -2 Unit IV, V and VI		

Teaching Scheme	Examination Scheme		Credit Allotted
Theory : 04 hrs/week	End Semester Examination	: 60 Marks	Theory :04
Practical: 02			
hrs/week			
	Continuous assessment	: 40 Marks	Practical :01
	Term Work	:25 Marks	Total Credits: 05
	Prat/Oral	: 25 Marks	

To gain an understanding of the principles behind the design of wireless communication systems and technologies.

Course Prerequisites:

Students should have knowledge of

...Computer Networking And Communication

Course Outcome:

Students will be able to:

- 1) Understand mobile cellular architecture.
- 2) Understand the multiple access schemes & Handover, Handoff system.
- 3) Analyze the technology digital celluare system.
- 4) Understand the technology WLAN ,Bluetooth.
- 5) Understand the GPRS System.
- 6) Understand the technology ADHOC & 802.16 system.

•••

UNIT-I	INTRODUCTION OF WIRELESS COMMUNICATION	(Hours)
	Challenges in wireless networking, Wireless communications standards Overview, evolution of cellular system, Cellular system architecture & operation, Performance criteria. Multiple access schemes for wireless communication -TDMA, FDMA, CDMA, SDMA	08
UNIT-II	WIRELESS NETWORK PLANNING AND OPERATION	(Hours)
	frequencies management, channel assignments, frequency reuse, System capacity& its improvement, Handoffs & its types, roaming, co channel & adjacent channel interference.	08
UNIT-III	DIGITAL CELLULAR NETWORKS	(Hours)
	GSM architecture& interfaces, signal processing in GSM, frame structure of GSM, Channels used in GSM, The European TDMA Digital cellular standard.	08
UNIT-IV	WIRELESS LAN TECHNOLOGY	(Hours)

		Overview, WLAN technologies, infrared LANs, Spread Spectrum	08
		LANs Narrowband Microwave LANs IEEE 802.11- Architecture,	
		protocols, MAC layer .MAC frame, MAC management.	
		BLUETOOTH Overview, Radio specification, Base band	
		specification, Link manager specification, logical link control &	
		adaptation protocol.	
UNIT	Γ-V	MOBILE DATA NETWORKS	(Hours)
		Introduction, Data oriented CDPD networks, GPRS WIRELESS	08
		ACCESS PROTOCOL WAP architecture, Wireless Datagram	
		,Wireless Transport layer security, wireless transaction ,Wireless	
		Session ,Wireless Application Environment ,WML	
UNIT	Γ-VI	Emerging Wireless Network Technology	(Hours)
		IEEE 802.11 WLAN, ETSI HIPER LAN Technology, IEEE	08
		802.15 WPAN Technology, IEEE 802.16 WMANTechnology,	
		Mobile Adhoc Network, Mobile IP and Mobility Management,	
		Mobile TCP, Wireless Sensor Networks, RFID Technology.	
	Books:		, , , , , , , , , , , , , , , , , , ,
1)		m C.Y.Lee, "Mobile cellular Telecommunication", 2nd Ed. McGraw-	-Hill Y
2)	Joche	n Schiller, "Mobile Communication" Pearson Education Ÿ	
3)	V. K.	Garg, J. E. Wilkes, "Principle and Application of GSM", Pearson Edu	cation
Refer	rence B	ooks:	
1)	Willi	am Stalling," Wireless Communication & Networking"	
2)	Ramp	antly," Mobile communication"	
3)		o Feher," Wireless digital communication", PHI, 1999	
		Unit Test:	
	Test -1	Unit I ,II and III	
Unit '	Test -2	Unit IV, V and VI	

Teaching Scl		Examination Scheme		Credit Allotte	d
Theory: 0		End Semester Examination		0	04
Practical: 02	2	Continuous assessment	: 40 Marks	Term Work:	
		Term Work	: 25 Marks	Total Credits	: 5
		Oral/Practical	: 25 Marks		
Course Obje	ctives:				
		oing Proper Data Warehouses			
2)Analyze the	E-Commer	ce Payment Mechanism and R	lisk		
3) Recognize	the business	impact and potential of e-Com	merce		
Course Prere	equisites:				
Students sho	-	owledge of			
1) Information		<u> </u>			
Course Outc					
Students will					
		Decision Support System, Typ).	
		process for Development of D			
		rehouse Concept and database			
,		erce & Third Parties	•		
		E-Commerce Payment Mecha	nısm		
o)10 understa	ina E-Commo	erce payment mechanism			
UNIT-I					(Hours
- · · -	Types of D	ecision Support System:			08
	• 1	e DSS hierarchy, Generalising	the categories Ma	tching the DSS to	
		on type, Individual and group	•	•	
		y, Matching DSS to the decision	_		
	-	tutional Vs ad-hoc DSS.	on waker 8 r Sycho.	iogicai type, Osei	
	DSS Archit	tecture, Hardware and Operatin	ng Systems Platforn	n:	
		fining the DSS Arch. The ma	•		
		puting in DSS, DSS using sha	• •		
			•	•	
		e system, Open system and DS	s, Dss user illeria	CC.	
	DSS Softw		1 1 0		
		S software categories, standa			
	generators,	programming languages for D	SS, DSS user inter	faces	
					(Hour
UNIT-II					
UNIT-II	Building &	Implementing Decision Supp	ort System:		08
UNIT-II	_	1 0 11	•	roject particulars.	08
UNIT-II	The	e DSS development process, I	OSS development p		08
UNIT-II	The imple	1 0 11	OSS development p version. Overcom	ing resistance to	08

UNIT-III	Data Warehousing & Executive Information System Fundamentals: Definitions uses & necessity of a data warehousing, Data warehouse concepts, Executive information systems. The Data Warehouse Database: Contents of the data warehouse database, database structures, and Getting data into data warehouse, Media.	(Hours)
		08
UNIT-IV	E-Commerce & The Role of Independent Third Parties: Introduction, consulting parties & accountant's independence, CPA version project, New assurance project, New assurance services undefined by the AICTE the Elliot committee 7 the Cohen Committee, three views of E-Commerce. E-commerce integrity & security assurance, internal control framework, competition, risk assessment assurance, impact of e-commerce on the traditional assurance function, continuous auditing, third party assurance of web based e-commerce, security of data, business plitics, transactions processing integrity, privacy of data, web-site seal options, better business bearu. Trustee, veri-sign, ACSA, AICPA/CICA web trust, business practices, transaction integrity, information protection, report issuance, implication for the accounting, professional skill sets, expansion of assurance services, consulting and international services	(Hours)
		08
UNIT-V	E-Commerce & Internet: Introduction, traditional EDI system, the origin of EDI, non-EDI systems, value added network(VANS) and pre-established trading partners, partially integrated EDI systems, benefits of EDI systems, Data transfer and standards, Department of Defense transaction,. Examples, financial EDI, EDI systems and Internets, Security concerns, security of data during transmission, audit trials and acknowledgements, authentication, interact trading relationship; consumer to business, business to business, government to citizen benefits, EDI web browser transaction, software, insights EDI and internet systems. Real time EDI inventory links with suppliers, integrated delivery links with federal express, web based sales, Impact of EDI internet applications on the accounting profession, Increased complexity of auditing through the computer, integrity of reliance in the VANs, Extension of audit to trading partners systems, increased technological skill of smaller accounting firms.	(Hours)
		08
UNIT-VI	Risk of Insecure Systems: Introduction, Overview of risks associated with internet transactions, internet associated risks, risks of customers, false or malicious web sites, stealing visitor's hard id, & passwords, stealing visitor's credit card and information, spying on visitor's hard drive, theft of customer data from selling	(Hours)

agents and ISPs, Privacy and use of cookies, risk to selling agents, customer impersonation, denial of service attacks, data theft, internet associated risks, sabotage by former employees, snuffers, financial fraud, down loading of data, emails proofing, social engineering, risks associated with business transaction data transferred between trading partners, intranet extranet and internet relationship, data interception, message origin authentication, proof of delivery, message integrity & unauthorized viewing of messages, timely delivery of messages, risk associated with viruses and malicious code overflows, viruses, Trojan Horses, hoaxes, buffer overflows, implication for the accounting profession, intranet internet controls web site assurance.

E-Commerce Payment Mechanism:

Introduction, the SET protocol. SET v/s SSI, version 1.0, payment gateway, Certificate Insurance, Certificate trust chain, Cryptography methods, Dual signature, the set logo, Compliance testing, Status of software implementation, version 2.0, and intermediate releases, magnetic strip cards, smart cards, Electronic cheques, The FSTC's electrons cheques, the FSTC's BIPS specification, audit implications, Electronic bill presentation & payment system.

08 **Assignment List:** What is Decision Support System? Explain Types of Decision Support System. 2) Case Study: DSS Software Tools Explain Building & Implementing Decision Support System 3) Case Study: Trustee, veri-sign, ACSA, AICPA/CICA web trust Explain EDI, non-EDI systems, value added network (VANS) with example. 5) What are the types of digital wallets? Explain **6**) Relationship-Based Smart Credit Cards Text Books and References:: Efrem G. Mallach, "Decision support & data warehouse system", MGH International Green Stein, FeinMan, "Electronic Commerce", MGH International 2) W.S.Jawadekar, "Management Information System", MGH International 3) Daniel Minoli, "Web Commerce technology handbook", MGH International Mathews Leon, "The E-biz Primer- Alexis Leon", MGH International **Syllabus for Unit Test:** Unit I,II and III **Unit Test -1 Unit Test -2** Unit IV, V and VI

Teaching S	Scheme	Examination Scheme		Credit Allo	tted	
	04 hrs/week	End Semester Examination	: 60 Marks	Theory	: 04	
Practical:	02 hrs/week	Continuous assessment	: 40 Marks	Term Work		
		Term Work	: 25 Marks	Total Cred	its: 05	
		Pract/Oral	: 25 Marks			
Course Ob	jectives:					
1) Comput	er Forensics is	a rapidly changing field. Simp	le things, like s	stronger encr	yption	1
		systems, create new challenge	s for forensic e	xaminers ev	ery da	у.
Course Pre						
	nould have kno					
1) Praction	cal experience	of Computer Network and Net	work Security			
Course Ou						
	vill be able to:					
		outer as forensic investigator				
		ecovering data, tools used for r	ecovery			
		ing in Windows				
		echanism with the help of tool	S.			
		udit with the help of logs ection standard to the innovative	e network			
UNIT-I	Overview:	cetion standard to the innovativ	C HCtWOIK		(08	Hours)
01111-1		Computer Forensic, Types of Fo	oransic Sciance	Storage	(00	110015)
	_	age device characteristics, type		_		
			_			
		estigator: Role of Computer Fo	-			
	_	ion, investigation steps, respon	sibilities of Co	mputer		
	Forensic Inv	estigator.				
UNIT-II	Evidence:				(08	Hours)
	Definition of	of evidence, life cycle of eviden	ce, types of ev	idence,		
	rules for evi	dence, evidence.				
	Storage and	its Security Incident Response:	Introduction,			
	Investigation	ns, Pre-Incident Preparations, F	ormation of Ir	ncident		
	Response Te	eam, Role of Incident Response	Team.			
	-	ery: Definition of data recovery		y		
		techniques for recovering data				
UNIT-III	Investigatin				(08	Hours)
	Audit logs a	nd security, system log, remote	logging, confi	guring		
	XX7:1	ogging, setting up remote loggi	! 117! 1	4	1	

		reporter and Application Logs.	
UNI	T-IV	Forensic Tools:	(08 Hours)
		WinHex, X-Ways, Index.dat Analyzer, Data Doctor.	, , ,
		Disaster Recovery: Preparing for disaster recovery, backing up data,	
		scheduling backup jobs, restoring data, recovering from server	
		failure, selecting disaster recovery methods.	
UNI	T-V	Battling Cyber Squatters and Copyright Protection in the Cyber World:	(08 Hours)
		Concept of domain name and reply to cyber squatters, meta-tagging,	
		legislative and other innovative moves against cyber squatting,	
		freedom and control on the internet, works in which copyright	
		subsists and meaning of copyright, copyright ownership and	
		assignment, license of copyright, copyright term and respect for	
		foreign works, copyright infringement, offences and remedies,	
		copyright protection and content on the internet, copyright notice,	
		disclaimer and acknowledgment, downloading for viewing	
		contents, hyper-linking and framing, liability of ISPs for copyright,	
		violation in the cyber world, legal developments in the US, Napster	
		and its cousins, computer software piracy	
UNI	T-VI	Digital Signature, Certifying Authorities and E-Governance :	(08 Hours)
		Digital signature, digital signature certificate, certifying authorities	
		and liabilities, digital signature Governance in India.	
Assi	gnmen		
1)		yze various types of storage structures	
2)		erstand line of investigation in the form of steps	
3)		yze life cycle of evidence for security y data recovery mechanism with the help of tools.	
<u>4)</u> <u>5)</u>	- 11	yze the security audit with the help of logs	
6)		yze WinHex in detail	
7)		y disaster recovery techniques to preserve data	
8)		y copyreight protection standard to the innovative network.	
Text		/References:	
1)		. Siegel, "Forensic Science: The Basics"	
2)		ickell and John F. Fischer, "Crime Science: Methods of Forensic Detecti	on"
3)		ony J. Bertino, "Forensic Science: Fundamentals and Investigations"	
4)	Stuart	H. James and Ph. D., Jon J. Nordby, "Forensic Science: An Introduction	n to Scientific
	and In	vestigative Techniques", 2nd edition	
5)	Colin	Evans, "The Casebook of Forensic Detection: How Science Solved 100	of the
	1		

	World's	Most Baffling Crimes"
6)	Edward	Amoroso, "Cyber Security, Computer Network Security and Cyber Ethics", 2nd
	edition b	y Joseph Migga Kizza
7)	Robert N	AcCrie, "Security Operations Management", Second Edition Andy Jones and Debi
	Ashende	n, "Risk Management for Computer Security:
8)	Andy Jo	nes and Debi Ashenden, "Risk Management for Computer Security
Sylla	abus for U	Unit Test:
Unit	Test -1	Unit I ,II and III
Unit	Test -2	Unit IV, V and VI

Teaching S		Γ Semester III Subject: Electi Examination Scheme	·	Credit Allo	
Theory :		End Semester Examination	: 60 Marks	Theory	:04
hrs/week		Zita Seinester Zaamination	· OO WILLING	Theory	•04
Practical:	02	Continuous assessment	: 40 Marks	Term Wor	k:01
		Term Work	: 25 Marks		
		Oral/Practical	: 25 Marks	Total Cred	its: 05
Course Ob	jectives:				
1. Receive	an introduc	ction and historical perspective to	the field of bioi	nformatics	
2. Learn th	e key meth	ods and tools used in bioinformat	ics		
		oretical basis behind bioinformati			
4. Analyze	protein sec	quences, identify proteins, and ret	rieve protein str	uctures from	databases
-		these structures.	1		
•••	F-30				
Course Pro	erequisites				
		knowledge of			
		ecular Biology (or equivalent)			
·					
•••					
Course Ou					
Students w					
		ic concepts of Bioinformatics			
		lyze Sequence Alignment and Da	tabase Searching	g	
/		ein Structure			
		cin-protein Interactions and Algor in function and Computer tools f		onolyzaia	
3)10 under	stand Prote	in Tunction and Computer tools is	or phytogenetic	anarysis	
UNIT-I	Bioinfor	matics Basics:			(08
		Basic concepts, Protein and am	ino acid DN	A & RNA	Hours)
	Sequenc	<u>.</u>	Bioinformatics	databases:	
	1	tion, Motivation, Type of datal			
		s, Protein sequence databases,		-	
		· • • · · · · · · · · · · · · · · · · ·	1	i uatavases,	
	riotein s	tructure databases, Other relevan	i uatavases.		
UNIT-II	Sequenc	e Alignment and Database Search	ing:		(08
	-	ngle sequence alignments, Biological	0	n Pairwice	Hours)
		nts, Scoring matrix, Gap penalty	_		
	_	•			
		statistics of sequence alignmen			
	BLASI,	Statistics of sequence alignment	u score, E-vali	ie, r-vaiue,	

Multiple sequence alignments, ClustalW, Profile, Profile-sequence

	alignment, Profile-profile alignment, PSI-BLAST, Hidden Markov Models. Protein structure alignments: Structure superposition, structure alignment, Different structure alignment algorithms.	
UNIT-III	Protein Structure: Protein secondary structure predictions: Protein secondary structure, Hydrogen bond, secondary structure element, Methods for predicting secondary structure. Protein tertiary structure modeling: Basic concepts Protein folding and dynamic simulation, Comparative modeling, Threading, Ab initio modeling, Combined modeling approaches, CASP: A blind protein structure prediction competition. Experimental methods for protein structure determination: X-ray crystallography, Nuclear magnetic resonance (NMR).	(08 Hours)
UNIT-IV	Protein-protein Interactions: Experimental identification of protein-protein interactions, Yeast two- hybrid assay, High-throughput mass spectrometry, Interaction networks and system biology. Protein quaternary structure modeling: Basic concepts, Degrees of freedom, Presentation of protein conformations, Hydrophobicity factor, Shape complementary, Docking Scoring function, Protein-protein docking algorithms, Protein-ligand docking algorithms, Drug design, Multiple-threading algorithms, Homology modeling of protein-protein interactions, Protein and ligand binding, CAPRI.	(08 Hours)
UNIT-V	Biomolecular Simulations: Basic concepts, Units and derivatives, Force field and energy landscape, Truncation of nonbonded interactions. Conformational Sampling: Introduction, Minimization and algorithms, Molecular dynamics, Ensembles (statistical mechanics), Monte Carlo simulations.	(08 Hours)

		Solvation: Introduction, Periodic boundary condition, Ewald summation, Implicit solvent model and continuum electro statics, Monte Carlo simulation on parallel computers. Advanced Techniques: Introduction, Replica-exchange simulations, Restraint potentials, Free energy calculations, Membrane simulations.	
TINI	IT-VI	Biological Membranes:	(08
UN	11-V1	Introductions, Biological roles, Structural features, Membrane lipids, General structures, Aggregation states, Polymorphism, Thermal transitions, Electrostatic effects, Molecular dynamics, Membrane proteins, MD simulation of Membrane proteins.	Hours)
		Protein function: Sequence to function, Structure to function, Protein function identification methods and databases. Phylogenetics, Sequence-based taxonomy, Models, assumptions, and interpretations, From multiple alignment to phylogeny, Computer tools for phylogenetic analysis.	
Ass	ignment	Lict·	
1)		Bioinformatics Basics.	
2)	-	concept of Sequence Alignment and Database Searching.	
3)		Protein Structure and Protein quaternary structure modeling	
4)	Explain	Bio-molecular Simulations.	
5)	Explain	Conformational Sampling.	
6)	*	in detail Biological Membranes.	
7)	Explain	Protein function with examples.	
Tex 1) 2)	David M	and References:: Mount, "Bioinformatics", Cold Spring Harbor Press" Asdall, "Beginning Perl for Bioinformatics"	
3)		V. Mount, "Bioinformatics- Sequence & Genome Analysis"	
		Unit Test:	
Uni	it Test -1	Unit I ,II and III	
Uni	it Test -2	Unit IV, V and VI	

Teaching Scheme	Credit Allotted			
Theory: 04 hrs/week Practical: 02 hrs/week	End Semester Examination : 60 Marks		Theory :04	
	Continuous assessment	: 40 Marks	Practical: 01	
	Term Work	: 25 Marks	Total Credits: 05	
	Practical / Oral	: 25 Marks		

The aim of the course is to design distributed computing architecture to improve the efficiency of system.

Course Objectives:

- 1) Analyze the structure of distributed computing
- 2) Apply the efficient solution with respect to suitable distributed computing Architecture.

Course Prerequisites:

Students should have knowledge of

2) Basic knowledge of distributed system

Course Outcome:

- 1) Understand distributed environment.
- 2) Analyze performance of distributed Architectures
- 3) Analyze the computing parameters.
- 4)Understand data and computing measures
- 5) Analyze bottlenecks during the enhancement
- 6) Apply the suitable architecture to enhance the performance.

UNIT-I	Introduction to cloud computing	(Hours)
	Introduction to to various distributed computing architectures –	06
	Grid, cluster, cloud. Structure of cloud, computing parameters of	
	cloud, boost in the performance due to cloud.	
UNIT-II	Architecture of cloud computing	(Hours)
	Service Models – Infrastructure As a Service (IaaS) , Platform as a	06
	Service (PaaS), Software as a Service (SaaS)	
	Deployment Models – Public cloud, private cloud, Hybrid cloud, community cloud	
UNIT-III	Big Data	(Hours)
	Concept of Big Data, Challenges to deal with Big Data,	06
	solution with respect to big data, data Analytics.	
UNIT-IV	Data Intensive Computing	(Hours)
	Introduction to hybrid data, concept of Hadoop Distributed	06

		File Structure (HDFS), data node, name node, job tracker, Task Tracker.			
UNIT-V Architecture of Map Reduce Algorithm ((Hours)		
		Concept of unstructured data, Introduction to Map Reduce	06		
	Algorithm, Implementation with word count example.				
UNI	Γ-VI	Case Study of advanced computing Architecture	(Hours)		
		Cloudstack, Eucalyptus, Azure, big data analytics,	06		
		Hadoop,Implementation of MapReduce -II			
Assig	gnment	List:	<u> </u>		
1)	_	n cluster using apache web server			
2)		n cloud computing environment using public cloud			
3))	n cloud computing environment using private cloud			
4)		yse the Complete data of BVUCOE using big data analytics			
5)		IDFS to deal with huge data.			
6)	_	plement Map Reduce Algorithm to prove the rise in the efficiency			
7)		plement Map Reduce II			
8)	8) Analyze various computing environments like cloudstack, openstack.				
Text	Books				
1)	Architecture the cloud, Michael J. Kevis, Wiley publication				
2)	Microsoft Big Data Solution, Adam Jorgensen, Wiley publication				
3)	Hadoop: The Definitive Guide, Tom White, O'REILLY' publication				
Refe	rence]	Books:			
1)					
2)	Hadoop Operations, Eric Sammer, O'REILLY' publication				
3)	MapReduce Design Patterns: Building Effective Algorithms and Analytics Donald Miner, O'REILLY' publication				
v		· Unit Test:			
Unit Test -1 Unit I ,II and III					
Unit	Test -2	Unit IV, V and VI			

M.Tech IT Semester III Subject: Elective II: Usability Engineering			
Teaching Scheme	Examination Scheme		Credit Allotted
Theory : 04 hrs/week	End Semester Examination	: 60 Marks	Theory: 04
Practical: 02 hrs/week	Continuous assessment	: 40 Marks	Term Work: 01
	Term Work	: 25 Marks	Total Credits: 05
	Pract/Oral	: 25 Marks	

Course Objectives:

1) To present the basic principles and practical knowledge regarding the design, development and evaluation of human-computer interfaces in the light of usability

Course Prerequisites:

Students should have knowledge of

2) Practical experience of software system analysis and design

Course Outcome:

- 2) Define and distinguish between the different types of user interface
- 2) Develop a more usable interface
- 3) To identify techniques and technologies that can satisfy usability and accessibility specifications
- 4) To apply usability methods in developing interactive systems
- 5) To identify and analyze the various components of the overall context of use of an interactive system
- 6) To develop usability and accessibility specifications that can be used in evaluating and developing interactive systems-

UNIT-I	Introduction	(08 Hours)
	Introduction, Importance, Human computer interface, Characteristics of GUI, Direct manipulation graphical system, Web user interface, Mobile UI, Popularity of graphics Generations of User Interfaces: Batch Systems, Line-Oriented Interfaces, Full-Screen Interfaces	
UNIT-II	Development Processes	(08 Hours)
	Managing Design Processes: Organizational Design to	
	Support Usability, The three Pillars of Design,	
	Development Methodologies, Ethnographic Observation,	
	Participatory Design, Scenario Development, Social Impact	
	Statement for Early Design Review, Legal issues	
	Evaluating Interface Designs: Expert Reviews, Usability	
	Testing and Laboratories, Survey Instruments, Acceptance	
	Tests, Evaluation during Active Use, Controlled	
	Psychologically Oriented Experiments	

UNI	T-III	User Interface Software and Specifications	(08 Hours)	
		Languages and tools for specifying and building interfaces,		
		Dialogue independence, UIMS (user interface management		
		system) approach, Languages and software abstractions for		
	user, interfaces, Programming support tools			
UNI	UNIT-IV Develop System Menus and Navigation Schemes		(08 Hours)	
		Menus: Structures, Functions, Content, Formatting of		
		Menus, Phrasing the Menu, Selecting Menu Choices,		
		Navigating Menus, Kinds of Graphical Menus		
		Windows: Window Characteristics, selection of window,		
		Components of a Window, Window Presentation Styles,		
		Types of Windows, Window Management, Organizing		
T 13 17		Window Functions, Window Operations, Web Systems	(0 0 TT	
UNI	I-V	Interaction Styles, Devices and Techniques	(08 Hours)	
		Interaction Styles: Question and answer, Form-based, Command language Menus, Natural language, direct		
		manipulation		
		Interaction Devices: Keyboard and function keys, pointing		
		device, speech recognition digitization and generation,		
		image and video displays, drivers		
		New Interaction Techniques: New modes of human-		
		computer communication, Voice, Gesture, Eye movement,		
		Tangible, user interfaces, Brain-computer interfaces		
UNI	T-VI	UI Feedback, Guidance and Assistance	(08 Hours)	
		Providing the Proper Feedback: Response Time,		
		Dealing with Time Delays, Blinking for Attention, Use of		
		Sound		
		UI Guidance and Assistance: Preventing Errors, Problem		
		Management, Providing Guidance and Assistance,		
Accid	man	Instructions or Prompting, Help Facility		
1)	Assignment List: Introduction to fundamentals of Usability Engineering			
2)	Study on User Interface Software and Specifications			
3)	Design a sport watch interface			
4)	Design a web application interface for online grocery shopping			
5)				
		ds aged 10-15 whose parents have opened a savings account for them		
6)	_	Design an interface and list user experience for a universal remote to be used in home lettings		
Text	Text Books:			
1)	1) Shneiderman, C. Plaisant, M. Cohen, and S. Jacobs, <i>Designing the User Interface:</i>			

	Strategies for Effective Human-Computer Interaction, Addison-Wesley, Reading, Mass. (any recent edition)		
2)	Y. Rogers, H. Sharp, and J. Preece, Interaction Design: Beyond Human-Computer		
	Interaction, John Wiley & Sons. (any recent edition)		
Ref	erence Books:		
1)	Don Norman, The Design of Everyday Things		
2)	Jakob Nielsen, Usability Engineering		
3)	Jakob Nielsen and Raluca Budiu, Mobile Usability		
Syll	Syllabus for Unit Test:		
Unit	t Test -1 Unit I ,II and III		
Unit	t Test -2 Unit IV, V and VI		

M.Tech IT Semester III Subject: Elective II: Advanced Database Management				
System				
Teaching Scheme	Examination Scheme	Credit Allotted		
Theory : 04 hrs/week	End Semester Examination: 60 Marks	Theory: 04		

: 40 Marks

: 25 Marks

: 25 Marks

Practical

Total

: 01

: 05

C	OL:4:
Course	Objectives:

Practical: 02 hrs/week

1) Introduce principles and foundations of distributed databases and parallel databases

Continuous assessment

2) Understand the operations in Transaction management

Term Work

Prat/oral

Course Prerequisites:

Students should have knowledge of

1)Basic database management system concepts and their operations.

Course Outcome:

- 1) Understand distributed database architecture and design
- 2) Understand the processing and optimization of distributed queries
- 3) Understand the performance issues in high performance databases
- 4) Understand the working of parallel database management system
- 5) Understand the transaction management process
- **6)** Understand latest advancement in database management systems

UNIT-I	Distributed databases: Architecture and Design	(Hours)	
	Distributed data processing, What is a DDBS; Advantages and disadvantages of DDBS, Problem areas	08	
	Distributed DBMS Architecture: Transparencies in a distributed DBMS, Distributed DBMS architecture, Global directory issues,		
	Distributed Database Design: Alternative design methodologies and strategies, Distributed design issues, Types and role of Fragmentation, Types and role of replication, Data allocation		
UNIT-II	Distributed query processing and optimization	(Hours)	
	Distributed Query processing: Problem of query processing,	08	
	Distributed query, Query decomposition, Distributed Query		
	Processing Methodology, translation global queries to fragment		

	queries		
	Distributed Optimization: Objectives of query optimization, Factors		
	governing query optimization, Ordering of fragment queries,		
	optimization of join operation, Load balancing, Distributed query		
	optimization algorithms		
UNIT-III	Issues and Concerns in High Performance Databases	(Hours)	
01(11 111	Database Tuning and Performance: benchmarking, TPC benchmarks,	08	
	object oriented benchmarks, TP Monitors, TPC and Wisconsin		
	benchmarks, performance measurement, and performance tuning.		
	Semantic data Control: View management, Data security, Semantic		
	Integrity Control		
	Indexing structures: Btrees, hash files, multi-attribute indexing.		
UNIT-IV	Parallel Database Management System	(Hours)	
	Introduction: Types of parallelism in database systems, Parallel Query	08	
	Processing, multiprocessor architectures, parallel relational operators,		
	parallelism in main-memory DBMS, parallel handling of integrity		
	constraints, Integrated I/O parallelism		
	Parallel Query Processing and Optimization: Inter-query parallelism,		
	intra-query parallelism, intra-operation parallelism, inter-operation		
	parallelism, objectives of parallel query optimization, parallel query		
	optimization, load balancing, parallelism in join queries, testing the		
	quality of query optimization		
TINITE X7	A large of the Control of the Manager of the Manage	(II)	
UNIT-V	Advanced concepts in Transaction Management	(Hours)	
	Transaction Management: ACID properties, pessimistic locking, optimistic locking, flat transactions, nested transactions, deadlock	08	
	detection and management and their algorithms, Recovery Methods		
	Consumers control and Ballability in Distributed Dachages		
	Concurrency control and Reliability in Distributed Dtabases: Concurrency control in centralized database systems vs Concurrency		
	control in DDBSs, Distributed concurrency control algorithms,		
	Deadlock management, Reliability issues in DDBSs; Types of		
	failures, Reliability techniques, Commit protocols, Recovery protocols		
UNIT-VI	Emerging trends in databases	(Hours)	
	Mobile Databases, Distributed Object Management, Multi-databases,	08	
	Semantic databases, Hadoop Distributed File Systems, MapReduce		
	Overview, NoSQL Databases, Design and Comparison of NoSQL		
	Databases, Active and Deductive databases		

Assig	ment List:		
1)	To study and implement different types of Views in SQL		
2)	Study and implementation of all types of Joins using SQL		
3)	Implementation of hash files		
4)	Study of transaction and implementing transaction operations using SQL/PL-SQL		
5)	Installation and study of Hadoop.		
6)	Installation and study of any NoSQL database		
7)	Comparison and Implementation of locking techniques		
8)	Case study of the operations of any real time distributed DBMS and parallel DBMS		
Text 1	ooks:		
1)	Stefano <i>Ceri and</i> Giuseppe <i>Pelagatti</i> , "Distributed databases principles and systems", Tata Hill		
2)	Raghu Ramkrishnan, "Database Management System", McGraw-Hill		
3)	Silberschatz, Korth and Sudharshan, "Data base System Concepts", Mc-GrawHill		
Refer	nce Books:		
1)	M. Tamer Özsu and Patrick Valduriez, "Principles of Distributed Database Systems", Springer Science & Business Media, 2011, 3 rd edition		
2)	Elmasri and Navathe, "Fundamentals of Database Systems", Addison-Wesley, 2007		
3)	Thomas Connolly, Carolyn Begg, "Database Systems: A Practical Approach to Design,		
	Implementation and Management ",Pearson Education, LPE		
Syllal	s for Unit Test:		
Unit 7	est -1 Unit I ,II and III		
Unit '	est -2 Unit IV, V and VI		

M.Tech IT Semester III Subject: Elective-II- Advanced Operating Systems				
Teaching Scheme	Examination Scheme		Credit Allotted	
Theory : 04 hrs/week	End Semester Examination:	60 Marks	Theory : 04	
Practical :02	Continuous assessment :	40 Marks	Practical : 01	
	Term Work :	25 Marks		
	Prat/Oral :	:25 Marks	Total Credits: 05	

Course Objectives:

1) To provide students with an overview of operating systems with change in technologies and use

Course Prerequisites:

Students should have knowledge of

- 1) Basic concepts of operating systems.
- 2) Basic algorithms in operating systems.

Course Outcome:

- 1)Understand core structure of operating systems
- 2)) Understand distributed operating systems.
- 3) Understand distributed resource management.
- 4) Understand multiprocessor and database operating systems.
- 5) Understand real time and mobile operating systems.

UNIT-I	INTRODUCTION	(Hours)
	Overview - Functions of an Operating System - Design Approaches -	08
	Types of Advanced Operating System – Synchronization Mechanisms –	
	Concept of a Process, Concurrent Processes - The Critical Section	
	Problem, Other Synchronization Problems – Language Mechanisms for	
	Synchronization – Axiomatic Verification of Parallel Programs – Process	
	Deadlocks – Preliminaries – Models of Deadlocks, Resources, System	
	State - Necessary and Sufficient conditions for a deadlock - Systems	
	with Single-Unit Requests, Consumable Resources, Reusable Resources.	
	DICEDIDITED ODED ANDIC CLICKED AC	/ TT \
UNIT-II	DISTRIBUTED OPERATING SYSTEMS	(Hours)
UNIT-II	DISTRIBUTED OPERATING SYSTEMS Introduction – Issues – Communication Primitives – Inherent	(Hours) 08
UNIT-II		, ,
UNIT-II	Introduction – Issues – Communication Primitives – Inherent	
UNIT-II	Introduction – Issues – Communication Primitives – Inherent Limitations - Lamport's Logical Clock; Vector Clock; Casual Ordering	, ,
UNIT-II	Introduction – Issues – Communication Primitives – Inherent Limitations - Lamport's Logical Clock; Vector Clock; Casual Ordering Global State; Cuts; Termination Detection. Distributed Mutual Exclusion	, ,
UNIT-II	Introduction – Issues – Communication Primitives – Inherent Limitations - Lamport's Logical Clock; Vector Clock; Casual Ordering Global State; Cuts; Termination Detection. Distributed Mutual Exclusion – Non Token Based Algorithms – Lamport's Algorithm – Token-Based	, ,
UNIT-II	Introduction — Issues — Communication Primitives — Inherent Limitations - Lamport's Logical Clock; Vector Clock; Casual Ordering Global State; Cuts; Termination Detection. Distributed Mutual Exclusion — Non Token Based Algorithms — Lamport's Algorithm — Token-Based Algorithms — Suzuki-Kasami's Broadcast Algorithm — Distributed	, ,
UNIT-II	Introduction – Issues – Communication Primitives – Inherent Limitations - Lamport's Logical Clock; Vector Clock; Casual Ordering Global State; Cuts; Termination Detection. Distributed Mutual Exclusion – Non Token Based Algorithms – Lamport's Algorithm – Token-Based Algorithms – Suzuki-Kasami's Broadcast Algorithm – Distributed Deadlock Detection – Issues – Centralized Deadlock Detection	
UNIT-II	Introduction — Issues — Communication Primitives — Inherent Limitations - Lamport's Logical Clock; Vector Clock; Casual Ordering Global State; Cuts; Termination Detection. Distributed Mutual Exclusion — Non Token Based Algorithms — Lamport's Algorithm — Token-Based Algorithms — Suzuki-Kasami's Broadcast Algorithm — Distributed Deadlock Detection — Issues — Centralized Deadlock Detection Algorithms — Distributed Deadlock-Detection Algorithms, Agreement	, ,

UNIT-III	DISTRIBUTED RESOURCE MANAGEMENT	(Hours)			
	Distributed File Systems – Architecture – Mechanisms – Design Issues – Distributed Shared Memory – Architecture – Algorithm – Protocols – Design Issues, Distributed Scheduling – Issues – Components - Algorithms	08			
UNIT-IV	FAULT RECOVERY AND FAULT TOLERANCE	(Hours)			
	Basic Concepts – Classification of Failures- Basic Approaches to Recovery; Recovery in Concurrent Systems; Synchronous and Asynchronous Check pointing and Recovery; Check pointing in Distributed Database Systems; Fault Tolerance; Issues – Two phase and Non-blocking Commit Protocols; Voting Protocols; Dynamic Voting Protocols.	08			
UNIT-V	MULTIPROCESSOR AND DATABASE OPERATING SYSTEMS	(Hours)			
	Structures – Design Issues – Threads –Processing Synchronization – Process Scheduling – Memory Management – Reliability / Fault Tolerance; Database Operating Systems –Introduction – Concurrency Control – Distributed Database Systems – Concurrency Control Algorithms.	08			
UNIT-VI	REAL TIME AND MOBILE OPERATING SYSTEMS	(Hours)			
	Basic Model of Real Time Systems - Characteristics- Applications of Real Time Systems - Real Time Task Scheduling - Handling Resource Sharing - Mobile Operating Systems - Micro Kernel Design - Client Server Resource Access - Processes and Threads - Memory Management - File system.	08			
Assignmer	nt List:				
1)Study of	hardware and software requirements of different operating systems				
2) Impleme	ent CPU scheduling policies.				
3)Impleme	nt Lamport's Algorithm – Token-Based Algorithm				
	ent Suzuki-Kasami's Broadcast Algorithm				
	distributed file systems – architecture				
	fault recovery and fault tolerance				
7) Implement file storage allocation techniques.					
8) Study of	Concurrency Control Algorithms.				

9) C	ase study of mobile operating systems						
10) (Case study of real time operating systems						
Text	Books:						
1)	Mukesh Singhal and Niranjan G. Shivaratri, "Advanced Concepts in Operating Systems –						
	Distributed, Database, and Multiprocessor Operating Systems", Tata McGraw-Hill, 2001.						
•							
2)	Rajib Mall, "Real-Time Systems: Theory and Practice", Pearson Education India, 2006.						
Refe	erence Books:						
1)	Abraham Silberschatz; Peter Baer Galvin; Greg Gagne, "Operating System Concepts",						
	Seventh Edition, John Wiley & Sons, 2004.						
2)	Daniel P Bovet and Marco Cesati, "Understanding the Linux kernel", 3rd edition, O'Reilly,						
	2005.						
3)	Neil Smyth, "iPhone iOS 4 Development Essentials – Xcode", Fourth Edition, Payload						
	media, 2011.						
	110010, 2011.						
Syllabus for Unit Test:							
	Test -1 Unit I ,II and III						
	Test -2 Unit IV, V and VI						

Proposed Structure of M.Tech Information Technology CBCS Pattern (2015-16)

STRUCTURE & EXAMINATION PATTERN

MTech Information Tecnology

Semester IV Total Durati

Total Marks: 325 Total Credits: 34

Subject Teachi Schen (Hrs) Hrs./W		neme Irs) /Wee		Examination Scheme				Examination Scheme (Credits)		Total Credits	
	L	P	Theory	Unit Test	Attend ance	Tutorial/ assignme nts	TW	Pract/ Oral	TH	TW/P R/OR	
Self-Study Paper-II	04		60	20	10	10	-	-	04	-	04
Dissertation Stage –II	-	10	-	-		-	150	75		30	30
Total	04	10	60	20	10	10	150	75	04	30	34

List Of Self Study Subjects

Sr. No.	Self Study Paper I	Self Study Paper II			
	Sem-III	Sem-IV			
1	Real Time & Fault Tolerant System	Information Storage and Management			
2	Ad-hoc Network	Organizational Behavior			
3	Computer Oriented	Computer Vision and Digital Image			
	Numerical & Statistical	Processing			
	Methods				
4	Semantic Networks	Artificial Intelligence & Applications			
5	Embedded System and Applications	Design and Analysis of Algorithms			
6	Distributed Computing	Compiler Design			
7	Information Theory Coding	Computer Oriented Optimization			
	and Cryptography	Techniques			
8	Soft Computing	Information Security System			

M.Tech(IT) Sem-III

Self Study Paper I - Real Time & Fault Tolerant System

Teaching Scheme Examination Scheme

Lecture:-04 Hours Per Week
Theory: 60Marks
Internal Assement: 40 Marks
Total Credits: 04

Unit-I Structure of Real Time System

(08 Hrs)

: Performance Measure for real time system, Task Assignments, Fault Tolerant Scheduling, Real Time Vs General purpose Data Bases, Data Bases for Hard Real Time System, Real Time Communication

Unit-II Fault Tolerance(08 Hrs)

Fault-Error-Failure. Redundancy, Error Detection, Damage Confinement, Error Recovery, Fault Treatment, Fault Prevention, anticipated and unanticipated Faults. Error models: General coding scheme Error detection techniques: Watchdog processors, Heartbeats, consistency and capability checking, Data audits, Assertions, Control-flow checking, Error control coding. Application: DHCP

UNIT III Fault -Tolerance Techniques

(08 Hrs)

:Introduction, failure causes, fault types, fault detection, fault and error containment, redundancy, data diversity, reversal checks, malicious or Byzantine failures, integrated failure handling. Coding technique-fault tolerant self checking and fail safe circuits-fault tolerance in combinatorial and sequential circuits- synchronous and asynchronous fail safe circuits. Software fault tolerance: Process pairs, robust data structures, N version programming, Recovery blocks, Replica consistency & reintegration, multithreaded programs Application: VAX. Network fault tolerance: Reliable communication protocols, Agreement protocols, Database commit protocols -Application: Distributed SQL server Check pointing & Recovery - Application: Micro check pointing, IRIX Checkpoints

UNIT IV Experimental Evaluation

(08 Hrs)

Modelling and simulation based, Fault injection based - Application, NFTAPE fault injector . Modelling for performance, dependability and perform ability: dependability-specific methods (fault trees, reliability block diagrams), queues, stochastic Petrinets and stochastic activity networks - Application: Ultra SAN/NAS

<u>UNIT V</u> Reliability & Clock Synchronization: Introduction, obtaining parameter values, reliability models for hardware redundancy, software error models, taking time into account, clock synchronization, nonfault-tolerant synchronization algorithms, impact of faults, fault tolerant synchronization in hardware.

UNIT VI Practical Systems for Fault Tolerance

(08 Hrs)

Application: Ad-hoc wireless network - Application: NASA Remote Exploration & Experimentation System Architecture: Fault tolerant computers -general purpose commercial systems-fault tolerant multiprocessor and VLSI based communication architecture. Fault tolerant software: Design-N-version programming recovery block - acceptance tests-fault trees- validation of fault tolerant systems.

Reference Books: :-

- 1. K.K.Pradhan, "Fault Tolerant computing theory and techniques" volume III. Prentice Hall, 1989.
- 2. Krishna, Real Time System, TMH
- 3. Anderson and Lee, "Fault Tolerant principles and practice", PHI 1989.
- 4. Siewert, Real Time Embeded System, Cengage Learning.
- 5. Rajiv Mall, Real Time System, Pearson Edu.
- 6. Parag K. Lala, "Fault Tolerant and Fault Testable, Hardware design" PHI 1985.
- 7. Shem, toy Levei, Ashok K.Agarwala, "Fault Tolerant System design", Tata McGraw Hill

Self Study Subject – I Ad-Hoc Networks

TEACHING SCHEME EXAMINATION SCHEME

Lectures: 04 Hrs / Week

Credits: 04

Internal Assessment: 40 Marks

Theory: 60 Marks Duration: 03 Hours

UNIT I:

Introduction to Wireless Networks: Evolution of Mobile Cellular Networks, Global System for Mobile Communications (GSM), General Packet Radio Service (GPRS), Personal Communications Services (PCSs), Wireless LANs (WLANS), Universal Mobile Telecommunications System (UMTS), IMT2000, IS-95, CDMA One and CDMA 2000 Evolution. Origins of Ad Hoc: Packet Radio Networks: Introduction, Technical Challenges, Architecture of PRNETs, Components of Packet Radios, Routing in PRNETs, Route Calculation, Pacing Techniques, Media Access in PRNETs, Flow Acknowledgments in PRNETs.

UNIT II:

Ad Hoc Wireless Networks: Introduction, Heterogeneity in Mobile Devices, Wireless Sensor Networks, Traffic Profiles, Types of Ad Hoc Mobile Communications, Types of Mobile Host Movements, Challenges Facing Ad Hoc Mobile Networks. Ad Hoc Wireless Media Access Protocols: Introduction, Problems in Ad Hoc Channel Access, Receiver-Initiated MAC Protocols, Sender-Initiated MAC Protocols, Existing Ad Hoc MAC Protocols, MARCH: Media Access with Reduced Handshake.

UNIT III:

Overview of Ad Hoc Routing Protocols: Table-Driven Approaches, Destination Sequenced Distance Vector (DSDV), Wireless Routing Protocol (WRP), Cluster Switch Gateway Routing (CSGR), Source-Initiated On-Demand Approaches, Ad Hoc On-Demand Distance Vector Routing (AODV), Dynamic Source Routing (DSR), Temporally Ordered Routing Algorithm (TORA), Signal Stability Routing (SSR), Location-Aided Routing (LAR), Power-Aware Routing (PAR), Zone Routing Protocol (ZRP), Source Tree Adaptive Routing (STAR), Relative Distance Micro diversity Routing (RDMAR)

UNIT IV:

Communication Performance of Ad Hoc Networks: Introduction, Performance Parameters of Interest, Route Discovery (RD) Time, End-to-End Delay (EED) Performance, Communication Throughput Performance, Packet Loss Performance, Route Reconfiguration/Repair Time, TCP/IP-Based Applications

UNIT-5

TCP Over Ad Hoc: Introduction to TCP, Versions of TCP, Problems Facing TCP in Wireless Last-Hop, Problems Facing TCP in Wireless Ad Hoc, Approaches to TCP over Ad Hoc. Internet & Ad Hoc Service Discovery: Resource Discovery in the Internet, Service Location Protocol

(SLP) Architecture, SLPv2 Packet Format, JINI, Salutation Protocol, Simple Service Discovery Protocol (SSDP), Service Discovery for Ad Hoc, Ad Hoc Service Location Architectures.

UNIT-6

Ad Hoc Nomadic Mobile Applications, In the Office, While Traveling, Arriving Home, In the Car, Shopping Malls, The Modern Battlefield, Car-to-Car Mobile Communications, Mobile Collaborative Applications, Location/Context Based Mobile Services.

Reference Books:

- 1) Ad Hoc Mobile Wireless Networks: Protocols and Systems, By: C.-K. Toh, Publisher: Prentice Hall
- 2) Ad Hoc and Sensor Networks Theory and Applications, By Carlos De Morais, Publisher World Scientific Publications
- 3) Ad Hoc Wireless Networks Architecture and Protocols, C. Siva Ram Murthy, Publisher Pearson Education

M.Tech (IT) Sem III

Self Study Paper I – Computer Oriented Numerical & Statistical Method

TEACHING SCHEME EXAMINATION SCHEME

Lectures: 04 Hrs/Week Theory: 60 Marks

Internal Assessment: 40 Marks

Credits: 04

<u>Unit-I</u> (08 Hours)

Introduction

Numbers and Their Accuracy, Computer Arithmetic, Mathematical Preliminaries, Errors & Their Computation, General Error Formula, Error in a Series Approximation.

<u>Unit II</u> (08 Hours)

Solution of Algebraic & Transcendental Equation

Bisection Method, Iteration Method, Method of False Position, Newton-Raphson Method, Methods of Finding Complex Roots, Muller's Method, Rate of Convergence of Iterative Methods, Polynomial Equations.

<u>Unit-III</u> (08 Hours)

Interpolation

Finite Differences, Difference Tables Polynomial Interpolation: Newton's Forward & Backward Formula Central Difference Formulae: Gauss Forward & Backward Formula, Stirling's Bessel's, Everett's formula. Interpolation With Unequal Intervals: Langrange's Interpolation, Newton Divided Difference Formula, Hermite's Interpolation.

<u>Unit-IV</u> (08 Hours)

Numerical Integration & Differentiation

Introduction, Numerical Differentiation Numerical Integration: Trapezoidal Rule, Simpson's 1/3 and 3/8 rule, Boole's Rule, Waddle's Rule.

<u>Unit-V</u> (08 Hours)

Solution of Differential Equations

Picard's Method, Euler's Method, Taylor's Method, Runge-Kutta Methods, Predictor Corrector Methods, Automatic Error Monitoring & Stability of Solution.

Unit-VI (08 Hours)

Statistical Computation

Frequency Chart, Curve Fitting by Method of Least Squares, Fitting Of Straight Lines, Polynomials, Exponential Curves, Data Fitting with Cubic Splines, Regression Analysis, Linear & Non Linear Regression, Multiple Regression, Statistical Quality Control Methods.

Text Books / References

- Rajaraman V, "Computer Oriented Numerical Methods", Pearson Education.
- Gerald & Whealey, "Applied Numerical Analyses", AW.
- Jain, Iyengar and Jain, "Numerical Methods for Scientific and Engineering Computations", New Age Int.
- Grewal B S, "Numerical methods in Engineering and Science", Khanna Publishers, Delhi.
- T Veerarajan, T Ramachandran, "Theory and Problems in Numerical Methods, TMH.
- Pradip Niyogi, "Numerical Analysis and Algorithms", TMH.
- Francis Scheld," Numerical Analysis", TMH.
- Sastry S. S, "Introductory Methods of Numerical Analysis", Pearson Education.
- Gupta C.B., Vijay Gupta, "Introduction to Statistical Methods", Vikas Publishing.
- Goyal M, "Computer Based Numerical and Statistical Techniques", Firewall Media, New Delhi.

Syllabus for Unit Test

Unit Test I	Units I, II & III		
Unit Test II	Units IV, V & VI		

M Tech (IT) Sem-III

Self Study Paper -I: Semantic Network

Teaching Scheme Examination Scheme

Lecturers: 4 Hrs/ week Theory: 60 Marks

Internal Assessment: 40 marks

Credits-: 04

UNIT -I Overview Of semantic network

Defination of semantic network. Directed or undirected graph. Terms used in semantic network vertices, concepts, edges, label, and arcs.Common semantic relations. Form of knowledge representation. Cognitively based semantic networks. Semantic network as a frame network.

UNIT –II Inheritance in Semantic Network

ISA Links, Multiple Inheritances, Conflict properties, Conflict resolution strategies, Representing events, Representing predicates, Representing Relations.

UNIT -III Frames in Semantic Network

Terms used in frames Entity, attributes, associated values. Demons. Features of Frame Representations.

UNIT -IV Issues in Semantic Network

Comparative issues in Knowledge Representation. Expressiveness of semantic Nets.

UNIT –V Application

WordNet, Gellish models, semantic representation of natural language expressions and used in several Natural language processing applications, plagiarism detection.

UNIT -VI Tools

SNePS, MultiNet, plagiarism tools, tools used for lexical knowledge engineering

References

John F. Sowa "Semantic Networks".

John F. Sowa, Alexander Borgida *Principles of Semantic Networks: Explorations in the Representation of Knowledge*.

M.Tech (IT) Sem III Self Study Paper I –Embedded System

TEACHING SCHEME

Lectures: 04 Hrs/Week

EXAMINATION SCHEME

Theory: 60 Marks Internal Assessment: 40 Marks

Credits: 04

UNIT I INTRODUCTION

06 hrs.

Embedded system- characteristics of embedded system- categories of embedded system-requirements of embedded systems- challenges and design issues of embedded system- trends in embedded system- system integration-

UNIT II HARDWARE & SOFTWARE PARTITION

04 hrs.

- applications of embedded system- control system and industrial automation biomedical-data communication system-network information appliances- IVR systems- GPS systems.

UNIT III DEVELOPMENT OF SOFTWARE ARCHITECTURE

10 hrs.

multimeter- round robin with interrupt architecture- implementation of communication bridgefunction queue scheduling architecture- RTOS architecture.

UNIT IV HARDWARE ARCHITECTURE

10 hrs.

Hardware architecture- block schematic of a typical hardware architecture- CPU-memeory-I/O Devices- design with microprocesors development-ADC- DAC interfacing LED/LCD interfacing. Case study of processor- 16 bit and 32 bit processor-DSP processor.

UNIT V EMBEDDED SYSTEM PLATFORM AND DEVELOPMENT TOOLS 10 hrs.

Inter process communication- UART-IEEE 1394-IRDA-USB-PCI development tools- EPROM ERASER-signature

validator- accelerated design for video accelerator.

UNIT VI OVERVIEW OF DESIGN TECHNOLOGIES

10 hrs.

Design methodologies and tools- designing hardware and software components- system analysis and architecture

design- system integration- structural and behavioral description smart cards.

REFERENCE BOOKS:

- 1. Wayne wolf, "Computers as components", Morgan Kaufmann publishers, 2nd Edition, 2008.
- 2. Jean J.Labrosse, "Embedded system building blocks", CMP books, 2nd Edition, 1999.
- 3. Arnold berger, "Embedded system design", CMP books, 1st Edition, 2001.
- 4. Narayan and gong, "Specifications and design of embedded systems", Pearson education, 2nd Edition, 1999.

M.Tech(IT) Sem III

Self Study Paper I - Distributed Computing

Teaching Scheme: Lecture:-04 Peer Week **Examination Scheme**

Theory :60Marks Internal Assement : 40 Marks

Total Credits: 04

UNIT I INTRODUCTION

(08 Hrs)

Fundamentals of Distributed computing, system model, distributed operating system, designing operating system, Introduction to DCE ,Characterization of Distributed Systems - Examples - Resource Sharing and the Web - Challenges - System Models - Architectural and Fundamental Models - Networking and Internetworking - Types of Networks - Network Principles - Internet Protocols - Case Studies.

UNIT II PROCESSES AND DISTRIBUTED OBJECTS

(08 Hrs)

Interprocess Communication - The API for the Internet Protocols - External Data Representation and Marshalling - Client-Server Communication - Group Communication - Case Study - Distributed Objects and Remote Invocation - Communication Between Distributed Objects - Remote Procedure Call - Events and Notifications - Java RMI - Case Study.

UNIT III DISTRIBUTED TRANSACTION PROCESSING

(08 Hrs)

Transactions - Nested Transactions - Locks - Optimistic Concurrency Control - Timestamp Ordering - Comparison - Flat and Nested Distributed Transactions - Atomic Commit Protocols - Concurrency Control in Distributed Transactions - Distributed Deadlocks - Transaction Recovery - Overview of Replication And Distributed Multimedia Systems

UNIT IV Remote procedure call

(08 Hrs)

RPC model, Transparency of RPC, implementing RPC mechanism, Stub generation, Marshaling arguments and Results, Server Management, Parameter-passing Semantics, call Semantics, Communication protocols for RPCs, Complicated RPC Client server binding, Exception Handling, Security, special types of RPCs, RPCs in Heterogeneous Environments, Lightweight RPC, Optimizations for better performance.

UNIT V Distributed Shared Memory

(08 Hrs)

General architecture of DSM systems, Design and implementation of DSM, Granularity, structure of shared memory space, consistency models, Replacement Strategy, Thrashing, other approaches to DSM, Heterogeneous DSM, and Advantages of DSM, **Distributed Files Systems**Introduction, Features, Models, Accessing models; sharing Semantics & caching schemes, replication, Fault Tolerance, Atomic transactions.

UNIT VI Resource & process Management

Features of a good scheduling algorithm, Task assignment approach, Load balancing & load sharing approach, Introduction to process management, Process migration, Threads.

Text Books

- George Coulouris, Jean Dollimore and Tim Kindberg, Distributed Systems Concepts and Design, Pearson Education, 3rd Edition, 2002.
- 2. P.K.Singh –Distruibuted Computing

References

- 1. Sape Mullender, Distributed Systems, Addison Wesley, 2nd Edition, 1993.
- 2. Albert Fleishman, Distributes Systems- Software Design and Implementation, Springer-Verlag, 1994
- 3. M.L.Liu, Distributed Computing Principles and Applications, Pearson Education, 2004.
- 4. Andrew S Tanenbaum, Maartenvan Steen, Distibuted Systems Principles and Pardigms, Pearson Education, 2002

M Tech (IT) Sem-III

Self Study Paper –I: Information Theory, Coding and Cryptography

Teaching Scheme Examination Scheme

Lecturers: 4 Hrs/ week Theory: 60 Marks

Internal Assessment: 40 marks

Credits-: 04

UNIT I: - Information Theory

Uncertainty, Information, Entropy. Discrete Memoryless Channel. Mutual Information. Channel Capacity. Shannon's Theorems. Gaussian Channel. Limits to Communication.

UNIT II: - Linear Block Codes

Groups, Fields and Vector Spaces. Construction of Galois Fields of Prime Order. Syndrome Error Detection. Standard Array and Syndrome Decoding. Hamming Codes

UNIT III: - Cyclic Codes

Polynomial Representation of Codewords. Generator Polynomial. Systematic Codes. Generator Matrix. Syndrome Calculation and Error Detection. Decoding of Cyclic Codes.

UNIT IV: - Structure and Properties of Convolutional Codes

Convolutional Encoder Representation. Tree, Trellis, and State Diagrams. Distance Properties of Convolutional Codes. Punctured Convolutional Codes and Rate Compatible Schemes. Decoding of Convolutional Codes. Maximum Likelihood Detection. The Viterbi Algorithm.

UNIT V: - Introduction to Cryptography

History. Overview of cryptography. Simple classical cryptosystems. Cryptanalysis. Perfect Secrecy: - Information theoretic security.

UNIT VI: - Secret and Public Key Encryption

Description of DES. Description of AES (advanced encryption standard). Trapdoor Function. The RSA Algorithm

References

Information Theory Coding and Cryptography Ranjan Bose Tata McGraw-Hill Education

Jorge Castiñeira Moreira, Patrick Guy Farrell, Essentials of Error-Control Coding

Mtech IT Sem-III Self Study Paper-I: SOFT COMPUTING

Teaching Scheme Examination Scheme

Theory Hours: 04 Hrs/Week

Theory: 60 Marks
Class Test: 40 Marks

Credit:04

UNIT I [10 Hrs]

FUZZY SET THEORY

Introduction to Neuro , Fuzzy and Soft Computing , Fuzzy Sets – Basic Definition and Terminology , Set-theoretic Operations , Member Function Formulation and Parameterization , Fuzzy Rules and Fuzzy Reasoning , Extension Principle and Fuzzy Relations , Fuzzy If-Then Rules , Fuzzy Reasoning , Fuzzy Inference Systems , Mamdani Fuzzy Models , Sugeno Fuzzy Models , Tsukamoto Fuzzy Models , Input Space Partitioning and Fuzzy Modeling.

UNIT II [8 Hrs]

OPTIMIZATION

Derivative-based Optimization , Descent Methods , The Method of Steepest Descent , Classical Newton's Method , Step Size Determination , Derivative-free Optimization , Genetic Algorithms , Simulated Annealing , Random Search , Downhill Simplex Search.

UNIT III [08 Hrs]

NEURAL NETWORKS

Supervised Learning Neural Networks , Perceptrons - Adaline , Backpropagation Mutilayer Perceptrons , Radial Basis Function Networks , Unsupervised Learning Neural Networks , Competitive Learning Networks , Kohonen Self-Organizing Networks , Learning Vector Quantization , Hebbian Learning.

UNIT IV [08 Hrs]

NEURO FUZZY MODELING

Adaptive Neuro-Fuzzy Inference Systems , Architecture , Hybrid Learning Algorithm , Learning Methods that Cross-fertilize ANFIS and RBFN , Coactive Neuro Fuzzy Modeling – Framework Neuron Functions for Adaptive Networks – Neuro Fuzzy Spectrum.

UNIT V ,[08Hrs]

APPLICATIONS OF COMPUTATIONAL INTELLIGENCE

Printed Character Recognition, Inverse Kinematics Problems , Automobile Fuel Efficiency Prediction , Soft Computing for Color Recipe Prediction.

Reference Books

1. J.S.R.Jang, C.T.Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI, 2004, Pearson Education 2004.

- 2. Timothy J.Ross, "Fuzzy Logic with Engineering Applications", McGraw-Hill, 1997.
- 3. Davis E.Goldberg, "Genetic Algorithms: Search, Optimization and Machine Learning", Addison Wesley, N.Y.,1989.
- 4. S. Rajasekaran and G.A.V.Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms", PHI, 2003.
- 5. R.Eberhart, P.Simpson and R.Dobbins, "Computational Intelligence PC Tools", AP Professional, Boston, 1996.

Mtech IT Sem-IV

Self Study Paper-II : Information Storage and Management

Teaching SchemeExamination SchemeTheory Hours: 04 Hrs/WeekTheory: 60 MarksClass Test: 40 Marks

Credit:04

UNIT-I [08 Hrs]

Introduction to Storage Technology:

Review data creation and the amount of data being created and understand the value of data to a business, challenges in data storage and data management, Solutions available for data storage, Core elements of a data center infrastructure, role of each element in supporting business activities.

UNIT-II [08 Hrs]

Storage Systems Architecture:

Hardware and software components of the host environment, Key protocols and concepts used by each component ,Physical and logical components of a connectivity environment ,Major physical components of a disk drive and their function, logical constructs of a physical disk, access characteristics, and performance Implications, Concept of RAID and its components, Different RAID levels and their suitability for different application environments: RAID 0, RAID 1, RAID 3, RAID 4, RAID 5, RAID 0+1, RAID 1+0, RAID 6, Compare and contrast integrated and modular storage systems ,Iligh-level architecture and working of an intelligent storage system

UNIT-III [08 Hrs]

Introduction to Networked Storage:

Evolution of networked storage, Architecture, components, and topologies of FC-SAN, NAS, and IP-SAN,Benefits of the different networked storage options, Understand the need for long-term archiving solutions and describe how CAS fulfill the need,Understand the appropriateness of the different networked storage options for different application environments

UNIT-IV [08 Hrs]

Information Availability & Monitoring & Managing Datacenter:

List reasons for planned/unplanned outages and the impact of downtime, Impact of downtime. Differentiate between business continuity (BC) and disaster recovery (DR) ,RTO and RPO, Identify single points of failure in a storage infrastructure and list solutions to mitigate these failures, Architecture of backup/recovery and the different backup/ recovery topologies, replication technologies and their role in ensuring information availability and business continuity, Remote replication technologies and their role in providing disaster recovery and business continuity capabilities. Identify key areas to monitor in a data center, Industry standards

for data center monitoring and management, Key metrics to monitor for different components in a storage infrastructure, Key management tasks in a data center

UNIT-V [08 Hrs]

Securing Storage and Storage Virtualization:

Information security, Critical security attributes for information systems, Storage security domains, List and analyzes the common threats in each domain, Virtualization technologies, block-level and file-level virtualization technologies and processes.

Unit-VI [08 Hrs]

Information storage on cloud :Concept of Cloud, Cloud Computing, storage on Cloud, Cloud Vocabulary, Architectural Framework, Cloud benefits, Cloud computing Evolution, Applications & services on cloud, Cloud service providers and Models, Essential characteristics of cloud computing, Cloud Security and integration.

Reference books:

- EMC Corporation, Information Storage and Management, Wiley, ISBN number: 04702942134.
- Robert Spalding, "Storage Networks: The Complete Reference", Tata McGraw Hill, Osborne, 2003.
- Marc Farley, "Building Storage Networks", Tata McGraw Hill, Osborne. 2001.
- Meeta G. Somasundaram & Alok Shrivastava (EMC Education Services) editors; Information Storage and Management: Storing, Managing, and Protecting Digital Information; Wiley India.
- Ulf Troppens, Wolfgang Mueller-Friedt, Rainer Erkens, Rainer Wolafka, Nils Haustein; StorageNetwork explained: Basic and application of fiber channels, SAN, NAS, iSESI, INFINIBAND and FCOE, Wiley India.
- John W. Rittinghouse and James F. Ransome; Cloud Computing: Implementation, Management and Security, CRC Press, Taylor Frances Pub.
- Nick Antonopoulos, Lee Gillam; Cloud Computing: Principles, System & Application, Springer.
- Gupta, Storage Area Network Fundamentals, Pearson Education Limited, 2002.

M Tech (IT) Sem-IV

Self Study Paper –II: Organizational Behaviour

Teaching Scheme Examination Scheme

Lecturers: 4 Hrs/ week Theory: 60 Marks

Internal Assessment: 40 marks

Credits-: 4

UNIT I. Introduction to Management: Meaning, nature and importance of management; Management functions; Co-ordination; Managerial skills; Principles of management; Major school of management thought: An overview.

UNIT II. Planning: Importance of planning; Types of plans; Planning and decision making process.

UNIT III. Organisation and Control: Process of organizing; Organisational structure and design-vertical and horizontal dimensions.

UNIT IV. Organisational Behaviour: introduction to organizational behaviour in management; Foundations of individual behaviour-personality; perception; learning; values, attitudes and job satisfaction; ability and motivation.

UNIT V. Group: Foundations of group behaviour; Communication and group decision making; Leadership: power and politics, conflict.

UNIT VI. Organization: Foundations of organization structure; Job design, work settings and job stress; Organizational culture: Meaning, importance and characteristics of organization culture. Organization Change and Development: Significance of change; Forces of change: Resistance to organizational change; Management of change Organization development: Concept, characteristics and assumptions; Goals, approaches and techniques of organization development.

References

- 1. Cook, Curtis, Phillip Hunsaker and Robert Coffey, Management and Organisation Behaviour, McGraw Hill Co., New York, 2000.
- 2. Griffin, Ricky W., Organisational Behaviour, Houghton Mifflin Co., Boston.
- 3. Hellreigel, Don, John W. Slocum, Jr., and Richard W. Woodman, Organizational Behaviour, South Western College Publishing, Ohio.
- 4. Hersey and Blanchard, Management of Organisational Behaviour: Utilising Human Resources, 7th ed., Prentice Hall of India Ltd., New Delhi.

M.Tech (IT) Sem IV Self Study Paper II – Computer Vision And Digital Image Processing

Teaching Scheme: Examination Scheme Lecture:-04 Peer Week Theory:60Marks

Internal Assement: 40 Marks

Total Credits: 04

<u>UNIT I</u> Introduction to Digital Image Processing & Computer Vision (08 Hours)

Digital Image, Image Processing origins; Imaging in X-Rays, ultraviolet, visible infrared, visible, microwave, and radio bands; Fundamentals of image processing; Components of image processing systems; Glossary of terms & definitions of Low level processing, Mid level analysis, High level understanding, Pattern recognition, Computer vision, Computer graphics.

UNIT II Digital Image Fundamentals

(08 Hours)

Visual perception – human eye, brightness adaptation and discrimination, Electromagnetic spectrum; Image sensing and acquisition – single, strip and array sensors, Image formation models; Image sampling and quantization – basic concepts, representation of image, special and gray level resolution, aliasing, zooming and shrinking; Relationships between pixels – nearest neighbor, adjacency, connectivity, regions, and boundaries; Distance measures; Image operations on a pixel basis; Linear and nonlinear operations.

UNIT III Image Enhancement in the Spatial Domain (08 Hours)

Gray level transformations - image negatives, log, power-law and piecewise linear transformation functions; Histogram processing—equalization, matching; Enhancement operations - arithmetic, logic, subtraction and averaging; Spatial Filtering — linear & order-statistics for smoothing and first & second derivatives/gradients for sharpening;

UNIT IV Image Enhancement in the Frequency Domain (08 Hours)

2-D Fourier transform, its inverse and properties; Discrete and Fast fourier transform; Convolution and Correlation theorems; Filtering in frequency domain - low pass smoothing, high pass sharpening, homomorphic filtering.

UNIT V Image Compression: Background

(08 Hours)

Coding redundancy (Huffman encoding & Decoding); Transformation methods in Image processing such as applications of Discrete Cosine Transform (DCT). Fast Wavelet Transform; Inverse Wavelet Transform: JPEG

UNIT VI Image Segmentation

(08 Hours)

Point, Line and Edge detection; Line detection using Hough Transforms; Region-Based Segmentation; Segmentation using Watershed Transform;

Reference Books:

D.A.Forsyth and J. Ponce, COMPUTER VISION – A MODERN APPROACH, Prentice Hall.

Milan Sonka, Vaclav Hlavac and Roger Boyle, IMAGE PROCESSING, ANALYSIS AND MACHINE VISION, Chapman and Hall

Robert J. Schalkoff , DIGITAL IMAGE PROCESSING AND COMPUTER VISION, Wiley

Gonzalez and Woods, DIGITAL IMAGE PROCESSING, Addison Wesley

Arun D. Kulkarni, COMPUTER VISION AND FUZZY NEURAL SYSTEMS

M. Seul, L. O'Gorman, M.J. Sammon, PRACTICAL ALGORITHMS FOR IMAGE ANALYSIS: DESCRIPTIONS, EXAMPLES AND CODE, Cambridge University Press.

M Tech (IT) Sem-IV

Self Study Paper –II: Artificial Intelligence and Applications

Teaching Scheme Examination Scheme

Lecturers: 4 Hrs/ week Theory: 60 Marks

Internal Assessment: 40 marks

Credits-:04

UNIT-I: - General Issues and Overview of AI

The AI problems, what is an AI technique, Characteristics of AI applications. Introduction to LISP programming: Syntax and numeric functions, Basic list manipulation functions, predicates and conditionals, input output and local variables, iteraction and recursion, property lists and arrays.

UNIT-II:-Problem Solving, Search and Control Strategies

General problem solving, production systems, control strategies forward and backward chaining, exhausive searches depth first breadth first search. Heuristic Search Techniques Hill climbing, branch and bound technique, best first search & A* algorithm, AND / OR graphs, problem reduction & AO* algorithm, constraint satisfaction problems. Case Studies

UNIT-III:-Knowledge Representations

First order predicate calculus, skolemization, resolution principle & unification, interface mechanisms, horn's clauses, semantic networks, frame systems and value inheritance, scripts, conceptual dependency.

Case Studies based on Knowledge Representation.

UNIT-IV:-Natural Language processing

Parsing techniques, context free grammer, recursive transitions nets (RNT), augmented transition nets (ATN), case and logic grammers, symantic analysis. Game playing. Minimax search procedure, alpha-beta cutoffs, additional refinments. Planning Overview an example domain the block word, component of planning systems, goal stack planning, non linear planning.

Case Study based on Natural Language Processing

UNIT-V:-Probabilistic Reasoning and Uncertainty

Probability theory, bayes theorem and bayesian networks, certainty factor. Case Studies.

Expert Systems

Introduction to expert system and application of expert systems, various expert system shells, vidwan frame work, knowledge acquisition, case studies, MYCIN. Linking expert systems to other software such as DBMS, MIS, MDB. Expert System on Crop Prediction.

UNIT: -VI Applications

Neural Computing, Robotics. Learning Rote learning, learning by induction, explanation based learning.

BOOKS

- 1. Elaine Rich and Kevin Knight "Artifical Intelligence" Tata McGraw Hill.
- 2. "Artifical Intelligence" 4 ed. Pearson.
- 3. Dan W. Patterson "Introduction to Artifical Intelligence and Expert Systems", Prentice India.
- 4. Nils J. Nilson "Principles of Artifical Intelligence", Narosa Publishing House.
- 5. Clocksin & C.S.Melish "Programming in PROLOG", Narosa Publishing House.
- 6. M.Sasikumar, S.Ramani etc. "Rule based Expert System", Narosa Publishing House.

M.Tech (IT) Sem IV Self Study Paper II – Design & Analysis of Algorithm

TEACHING SCHEME EXAMINATION SCHEME

Lectures: 04 Hrs/Week Theory: 60 Marks

Internal Assessment: 40 Marks

Credits: 04

<u>Unit I</u> (08 Hours)

Basics of Algorithms & Data Types

Algorithms, Abstract Data Type, The Running Times of a Program, Time Space Tradeoff, Asymptotic Notations, Conditional Asymptotic Notation, Use of the Big O, Small o, Big Omega And Small Omega Notation.

<u>Unit II</u> (08 Hours)

Algorithms Analysis Techniques & Design Technique

Efficiency of Algorithms, Analysis of Recursive Programs, Solving Recurrence Equation.

Divide & Conquer Algorithms – Binary Search, Finding Maximum & Minimum, Merge Sort Multiplication of Large Integers and Stressen's Matrix Multiplication. Greedy Algorithm – Prim's Algorithm, Kruskal's Algorithm, Dijkstra's Method, Container Loading, Knapsack Problem, Huffman Tree.

Dynamic programming – General Method, Multistage Graphs, All-Pair Shortest Paths, Optimal Binary Search Trees, 0/1 Knapsack, Warshall's and Floyd's Algorithm.

Backtracking – 8 Queens Problem, Subset-Sum Problem, Graph Coloring, Hamiltonian Problem, Branch & Bound, Assignment Problem, Travelling Salesperson Problem.

<u>Unit III</u> (08 Hours)

Trees & Sorting

Basic Terminology, Implementation of Tree, An Array Representation of Trees, Representation of Trees by List of Children, Binary Trees, Deterministic Selection & Sorting, Optimality Of Algorithms for Sorting & Selection, Randomized Algorithms Like Randomized Quick Sort, Expected Linear Time Randomized Selection.

<u>Unit IV</u> (08 Hours)

Algorithms for External Storage

A Model of External Computation, External Sorting, Characteristics of External Sorting, Criteria for Developing an External Sorting Algorithm, Important Uses of External Sorting, Merge Sort--A Digression, Top-Down Strategy, Bottom-Up Strategy, Storing Information in Files, Hashed Files, Indexed Files.

<u>Unit V</u> (08 Hours)

Memory Management

The Issues in Memory, Garbage Collection Algorithms for Equal-Sized Block, Collection in Place, Buddy System, Distribution of Blocks, Allocation Blocks, Returning Blocks to Available Storage, Storage Compaction & Compaction Problem.

<u>Unit VI</u> (08 Hours)

NP Complete Problem

Introduction to NP Problem, Polynomial Time, Abstract Problems, Encoding, NP-Completeness & Reducibility, NP-Completeness, Circuit Satisfiability, NP-Complete Problems, The Vertex Cover Problem, Approximation Algorithms for NP-Hard Problems.

Text Books / References

- Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, "Computer Algorithms/ C++", Second Edition, Universities Press.
- K.S. Easwarakumar, "Object Oriented Data Structures using C++", Vikas Publishing House Pvt. Ltd.
- T. H. Cormen, C. E. Leiserson, R.L.Rivest, and C. Stein, "Introduction to Algorithms", Second Edition, Prentice Hall of India Pvt. Ltd.
- Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, "The Design and Analysis of Computer Algorithms", Pearson Education.
- Anany Levitin, "Introduction to the Design and Analysis of Algorithm", Pearson Education.
- Sara Baase and Allen Van Gelder, "Computer Algorithms Introduction to Design and Analysis", Pearson Education.
- Horowitz E., Sahni S., Rajasekaran S, "Computer Algorithms", Galgotia Publications.
- R.C.T. Lee, S.S. Tseng, R.C. Chang & Y.T.Tsai, "Introduction to the Design and Analysis of Algorithms A Strategic Approach", TMH.

Syllabus for Unit Test

Unit Test I	Units I, II & III
Unit Test II	Units IV, V & VI

M.Tech (IT) Sem -IV Self Study Paper II –Compiler Design

TEACHING SCHEME EXAMINATION SCHEME

Lectures: 04 Hrs/Week Theory: 60 Marks

Internal Assessment: 40 Marks

Credits: 04

UNIT I:

Overview of Compilation:

Phases of Compilation – Lexical Analysis, Regular Grammar and regular expression for common programming language features, pass and Phases of translation, interpretation, bootstrapping, data structures in compilation – LEX lexical analyzer generator.

Top down Parsing:

Context free grammars, Top down parsing – Backtracking, LL (1), recursive descent parsing, Predictive parsing, Preprocessing steps required for predictive parsing.

UNIT II:

Bottom up parsing:

Shift Reduce parsing, LR and LALR parsing, Error recovery in parsing , handling ambiguous grammar, YACC – automatic parser generator.

Semantic analysis:

Intermediate forms of source Programs – abstract syntax tree, polish notation and three address codes. Attributed grammars, Syntax directed translation, Conversion of popular Programming languages language Constructs into Intermediate code forms, Type checker.

UNIT III:

Symbol Tables:

Symbol table format, organization for block structures languages, hashing, tree structures representation of scope information. Block structures and non block structure storage allocation: static, Runtime stack and heap storage allocation, storage allocation for arrays, strings and records.

UNIT IV:

Code optimization:

Consideration for Optimization, Scope of Optimization, local optimization, loop optimization, frequency reduction, folding, DAG representation.

UNIT V:

Data flow analysis:

Flow graph, data flow equation, global optimization, redundant sub expression elimination, Induction variable elements, Live variable analysis, Copy propagation.

UNIT VI:

Object code generation:

Object code forms, machine dependent code optimization, register allocation and assignment generic code generation algorithms, DAG for register allocation.

REFERENCE BOOKS:

- 1. lex &yacc John R. Levine, Tony Mason, Doug Brown, O'reilly
- 2. Modern Compiler Design- Dick Grune, Henry E. Bal, Cariel T. H. Jacobs, Wiley dreamtech.
- 3. Engineering a Compiler-Cooper & Linda, Elsevier.
- 4. Compiler Construction, Louden, Thomson.
- 5. Principles of compiler design -A.V. Aho . J.D.Ullman; Pearson Education.
- 6. Modern Compiler Implementation in C- Andrew N. Appel, Cambridge University Press.

TEACHING SCHEME EXAMINATION SCHEME

Lectures: 04 Hrs / Week

Credits: 04

Internal Assessment: 40 Marks

Theory: 60 Marks Duration: 03 Hours

Self Study – II: Computer Oriented Optimization Techniques

UNIT-I

Introduction: The beginning and progress of Operations Research (OR), Classifications of problems in OR, Mathematical Modeling in OR. **Dynamic Programming: Introduction, Investment problem,** Dynamic Programming solution of the general allocation problem, stagecoach problem, production scheduling, equipment replacement.

UNIT - II

Linear Programming: Introduction, Formulation of linear programming models, Maximization of less-than-or-equal-to constraints, equalities and greater- than-or-equal-to constraints, Minimization of the objective function, The simplex method, **Integer Programming**: Introduction, implicit enumeration, Cutting Plane Techniques. Branch and Bound Techniques and algorithms.

UNIT-III

Deterministic Inventory models: Introduction, infinity delivery rate and back ordering. Sequencing problems: Two machine sequencing problem, *n-Job*, Three machine sequencing problem. *Probabilistic Operations Research Models: Basic concepts of probability and statistics, Regression Analysis in details.*

UNIT-IV

Decision Theory, Game Theory, PERT and CPM Project management origin and use of PERT, origin and use of CPM, Applications of PERT and CPM, Project Network, Diagram representation, Critical path calculation by network analysis and critical path method (CPM), Determination of floats, crashing in project management, Project Evaluation and review Technique (PERT). Simulation, Markov Chains.

Reference Books:

- 1. Introduction To Operations Research: A Computer-Oriented Algorithmic Approach, Billy Gilett, Tata Mcgraw Hill Education.
- 2. Operations Research An Introduction, Tata Hamdy, A, Fifth Edition, Prentice Hall of India Pvt. Ltd., New Delhi.

MTech IT (Sem IV) Self Study Paper II – Information Security System

Teaching Scheme: Examination Scheme Lecture:-04 Peer Week Theory :60Marks

Internal Assement: 40 Marks

Total Credits: 04

UNIT-I (08 Hours)

Introduction- Computer Security, Threats to security, History of Computer security, Computer System Security and Access Controls (System access and data access). Threats - Viruses ,worms , Trojan horse, bombs, trap doors, spoofs, email virus, macro viruses, remedies, Intruders, Malicious software, Firewalls, vulnerabilities & threats, Network Denial of service attack.

Security Attacks (Interruption, Interception, Modification and Fabrication), SecurityServices (Confidentiality, Authentication, Integrity, Non-repudiation, access Control and Availability) and Mechanisms, A model for Internetwork security, Internet Standards and attacks, route table modification, UDP hijacking, and man-in-the-middle attacks.

UNIT-II (08 Hours)

Conventional Encryption Principles, Conventional encryption algorithms, cipher block modes of operation, location of encryption devices, key distribution Approaches of Message Authentication, Secure Hash Functions and HMAC

UNIT-III (08 Hours)

Public key cryptography principles, public key cryptography algorithms, digital signatures, digital Certificates, Certificate Authority and key management Kerberos, X.509 Directory Authentication Service

UNIT-IV (08 Hours)

Email privacy: Pretty Good Privacy (PGP) and S/MIME.

UNIT-V (08 Hours)

IP Security Overview, IP Security Architecture, Authentication Header, Encapsulating Security Payload, Combining Security Associations and Key Management

UNIT-VI (08 Hours)

Web Security Requirements, Secure Socket Layer (SSL) and Transport Layer Security(TLS), Secure Electronic Transaction (SET), cloud computing security

TEXT BOOKS:

- 1. Network Security Essentials (Applications and Standards) by William Stallings Pearson Education.
- 2. Hack Proofing your network by Ryan Russell, Dan Kaminsky, Rain Forest Puppy, Joe Grand, David Ahmad, Hal Flynn Ido Dubrawsky, Steve W.Manzuik and Ryan Permeh, wiley Dreamtech,

REFERENCE BOOKS:

- 1. Fundamentals of Network Security by Eric Maiwald (Dreamtech press)
- 2. Network Security Private Communication in a Public World by Charlie Kaufman, Radia Perlman and Mike Speciner, Pearson/PHI.
- 3. Principles of Information Security, Whitman, Thomson.
- 4. Cryptography and network Security, Third edition, Stallings, PHI/Pearson
- 5. Network Security: The complete reference, Robert Bragg, Mark Rhodes, TMH
- 6. Introduction to Cryptography, Buchmann, Springer.

BHARATI VIDYAPEETH (DEEMED TO BE UNIVERSITY), PUNE

Faculty of Engineering And Technology
M. Tech - Information Technology
Old Syllabus

Bharati Vidyapeeth (Deemed to be University) Pune, India

College of Engineering, Pune

M. Tech (Information Technology) (2015 CBCS COURSE)

Program Curriculum

VISION OF THE UNIVERSITY

Social Transformation through Dynamic Education

MISSION OF THE UNIVERSITY

- To make available quality education in different areas of knowledge to the students as per their choice and inclination
- To offer education to the students in a conducive ambience created by enriched infrastructure! and academic facilities in its campuses.
- To bring education within the reach of rural, tribal and girl students by providing them substantive fee concessions and subsidized hostel and mess facilities
- To make available quality education to the students of rural, tribal and other deprived sections of the population

VISION OF THE INSTITUTE

To be World Class Institute for Social Transformation Through Dynamic Education.

MISSION OF THE INSTITUTE

- To provide quality technical education with advanced equipment, qualified faculty members, infrastructure to meet needs of profession and society.
- To provide an environment conducive to innovation, creativity, research and entrepreneurial leadership.
- To practice and promote professional ethics, transparency and accountability for social community, economic and environmental conditions.

VISION OF THE DEPARTMENT

To be a leading Programme, transforming students into skilled IT professionals.

MISSION OF THE DEPARTMENT

• Amplify the student's technical skills by conducting continuing education

programs, organizing and participating in various technical events.

- Provide comprehensive support in synchronization with industry to achieve professional and technological excellence.
- Provide an environment for effective social and ethical skills.

PROGRAMME OUTCOMES (POs)

After completing the M.Tech (Information Technology) programme, students acquire the ability to:

- 1) Identify research gaps and provide solutions to new ideas and innovations.
- 2) Design effective and efficient algorithms and codes
- 3) Apply software engineering principles and practices to provide solutions to complex software problems

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The Department of Information Technology postgraduate program prepares students to

- 1) Apply knowledge of computing and technology to analyze, design and simulate to provide optimized solutions for Complex Problems
- 2) Enhance skills, adapt new computing technologies and contribute to research & development either through research or by practice.
- 3) Engage in Professional and ethical practices in multidisciplinary working environment.

Proposed Structure of M.Tech Information Technology CBCS Pattern (2015-16)

STRUCTURE & EXAMINATION PATTERN

MTech Information Technology

Semester I	Total Duration: 20 Hrs/Week
------------	-----------------------------

Total Marks: 500 Total Credits: 18

						Т	otal Cr	edits: 18	3			
Subjects	Sch (Hr H	ching neme (s) (rs./			Examination (Marks				S	Examination Scheme (Credits)		
	L	Р	Theory	Unit Test	Attendance	Tutorial/ Assign ments	TW	Pract / Oral	ТН	TW/PR/ OR		
Software Architecture	04	02	60	20	10	10	25	25	04	01	05	
Machine Learning	04	02	60	20	10	10	25	25	04	01	05	
Mobile Networks & Communication	04		60	20	10	10			04		04	
Parallel Programming & Algorithms	04		60	20	10	10			04		04	
Total	16	04	240	80	40	40	50	50	16	02	18	

Teaching Sc	neme Examination Scheme	0	Credit Allotted
Theory : (hrs/week		: 60 Marks T	Theory :04
Practical : 0 hrs/week	2 Continuous assessment	: 40 Marks P	ractical : 01
	Term Work:25 Marks	Т	otal Credits: 05
	Prat/Oral: 25 Marks		
The aim of the	e course is to design a system to provide the	e solution to the existing	ng system
Course Obje	ctives:		
1) Analyze t	e problem in existing system.		
2) Apply the	efficient solution by wisely designing the a	rchitecture.	
Course Prer	quisites:		
	uld have knowledge of		
1) Basic	nowledge of java programming.		
•••			
Course Out			
Students wil			
	l problems in existing system		
•	asibility of design proposed.		
	e technology suitable to build the proposed		
	the use of design pattern to design the arch		
	e adherence of solution with the requireme		
6) Apply the	efficient architecture to optimize the performance	mance of the system	
			1 / >
UNIT-I	INTRODUCTION TO SOFTWARE A	RCHITECTURE	(Hours)
	Introduction to Software Architecture, A	chitecture of Rusiness	s 06
	Cycle, software architecture requirements,		
	Documenting software architectures, rece	* *	
	architectures.	in trongs in sortware	
	dreintectures.		
UNIT-II	DESIGN CONCERNS		(Hours)
	Introduction to the issues in design, (Considering important	1 06
	aspects during the design SRS, Cost,	0 1	
	Compatibility, Scalability, depende	•	
	Technology according to the requirement	•	
	recliniology according to the requirement	•	

UN	IT-III	DESIGN PATTERNS	(Hours)
		Introduction to Design patterns, principles and expectations	06
		Types of design patterns Singleton, Factory, Adaptor, Facade,	
		Proxy, Iterator, Observer, Mediator, composite. Rules and	
		regulations to select design patterns.	
7737	T T T T		(**
UN	IT-IV	TECHNOLOGIS USED IN MIDDLEWARE	(Hours)
		Types of Middleware, Application servers, Introduction to	06
		Java EE, Introduction to Java EE, JDBC, RPC, RMI, EJB	
		Architecture, Entity, Session, Message beans, XML, XSLT.	
		Specifications and characteristics of Middleware technologies.	
		Recent advances in Middleware technologies.	
UN	IT-V	N TIER ARCHITECTURE	(Hours)
		Introduction to tiers in Architecture, Types of Tiers , XML,	06
		Client side technologies HTML, DHTML, Java Applets,	
		ActiveX controls, DOM, AJAX. Client side technology in	
		multi-tier architectures Examples of three tier and n-tier	
		architectures, client side technologies.	
UN	IT-VI	SERVER SIDE TECHNOLOGY	(Hours)
		Multi-tier architectures, introduction to server side	06
		technologies: JSP, JSF, SOA, MVC. Java Servlets,	
		introduction to framework struts, spring.	
Ass	ignment I	ist:	
1)		n architecture to solve collision problem in Traffic Signaling S	System
2)		eneralized and specialized approach to simulate traffic signaling	•
3)		nt all types of driver to connect front end with back end using	
4)	Impleme	ent and maintain cookies in a structured relational database.	
5)		ent data and page transfer using servlet.	
6)		nt library management system using JSP.	
7)	Impleme		
8)	Impleme	nt CRUD functionality using MVC architecture with struts fra	amework.
Tex	t Books:		
1)			
		Architecture in Practice, Second Edition By Len Bass, Paul Cleme	ents, Rick Kazman
		:: Addison Wesley	
2)		atterns: Elements of Reusable Object-Oriented Software, Erich Ga	
3)	OCM Jav Oracle Pi	va EE 6 Enterprise Architect Exam Guide (Oracle Press) by Paul A	Allen , Joseph Bambara,
	Oracle Pi	CSS.	

Ref	ference B	ooks:				
1)	Software Architecture in Practice, Second Edition By Len Bass, Paul Clements, Rick Kazman					
	Publisher	r: Addison Wesley				
2)	Agile So	ftware Development, Principles, Patterns, and Practices, Robert C. Martin, Pearson Education				
3)		Integration Patterns: Designing, Building, and Deploying Messaging Solutions Gregor Hohpe, Bobby Woolf,				
	Publisher: Addison Wesley					
Syl	Syllabus for Unit Test:					
Uni	it Test -1	Unit I ,II and III				
Uni	it Test -2	Unit IV, V and VI				

Teaching Scheme	Examination Scheme		Credit Allotted
Theory : 04 hrs/week	End Semester Examination	: 60 Marks	Theory :04
Practical: 02 Hrs	Continuous assessment	: 40 Marks	Practical : 01
	Term Work:25 Marks		
	Prat/Oral: 25 Marks		Total Credits: 05

Course Objectives:

- 1) Introduces fundamental concepts and methods for machine learning
- 2) Familiarize with basic learning algorithms and techniques and their applications

Course Prerequisites:

Students should be familiar with logic, elementary probability theory, elementary linear algebra, and multivariable calculus

Course Outcome:

.

Students will be able to:

- 1) Understand regression
- 2) Understand basic probability theory
- 3) Understand estimation and classification techniques
- 4). Understand Bayesian and Monto Carlo methods
- 5). Understand concepts of Lagrange multipliers and Clustering
- 6) Understand Hidden Markov Models

UNIT-I		(08 Hours)
	Introduction to Machine Learning: Types of Machine Learning, A simple problem.	
	Linear Regression: The ID case, Multidimensional inputs, Multidimensional outputs.	
	Non Linear Regression: Basis function regression, Over fitting and Regularization,	
	Artificial Neural Networks, K-Nearest Neighbors.	

	Quadratics: Optimizing a quadratic.	
UNIT-II		(08 Hours)
	Basic Probability Theory: Classical logic, Basic definitions and rules, Discrete random Variables, Binomial and Multinomial distributions, Mathematical expectations. Probability Density Functions(PDFs): Mathematical expectation, mean, and variance, Uniform distributions, Gaussian distributions: Diagonalization, Conditional Gaussian Distribution.	
UNIT-III		(08 Hours)
	Estimation: Learning a binomial distribution, Bayes' Rule, parameter estimation: MAP, ML, and Bayes' Estimates, Learning Gaussians, MAP nonlinear regression. Classification: Class Conditionals, Logistic Regression, Artificial Neural Networks, K-Nearest Neighbor Classification, generative vs. Discriminative models, Classification by LS Regression, Naïve Baye's: Discrete Input Features, Learning, Gradient Decsnt: Finite differences.	
UNIT-IV		(08 Hours)
	Cross Validation, Bayesian methods: Bayesian Regression, Hyperparameters, Bayesian model Selection. Monte Carlo Methods: Sampling Faussians, Importance Sampling, Markov Chain Monte Carlo (MCMC). Principal Components Analysis: The model and learning, Reconstruction, Properties of PCA, Whitening, Modelling, Probabilistic PCA.	
UNIT-V		(08 Hours)
	Lagrange Multipliers: Examples, Least-Squares PCA in one-dimension, Multiple constraints, Inequality constraints.	
	Clustering: K-means Clustering, K-medoids Clustering, Mixtures of Gaussians: Learning, Numerical issues, the Free Energy, proofs, Relation to K-means, Degeneracy. Determining the number of clusters.	
UNIT-VI		(08 Hours)
	Hidden Markov Models: Markov Models, Hidden Markov Models, Viterbi Algoriyhm, The Forward Algorithm,	
Assignmen	nt List:	
1)	To study and implement K-Nearest neighbor algoritm	
2)	Problems solving on Probability density functions and Gaussian distribution	on
3)	Solving problems related to classification and estimation	
4)	Solving problems related to Bayesian method and Monte Carlo methods	
5)	To study and implement K-means clustering	

6)	Comparison of various Hidden Markov Models			
Tex	Books:			
1) Ÿ Kononenko, "Machine Learning And Data Mining: Introduction to Principles and Algorithms"				
	Horwood Publishing			
2)	Kevin Patrick Murphy, "Machine Learning: a Probabilistic Perspective", MIT Press			
Ref	erence Books:			
1)	Tom Mitchell, "Machine Learning", McGraw-Hill, 1997			
2)	Michael Berry & Gordon Linoff, "Mastering Data Mining", John Wiley & Sons			
3)	Cios, W. Pedrycz, R. Swiniarski, L. Kurgan, "Data Mining: A Knowledge DiscoveryK.			
	Approach", Springer			
Syll	abus for Unit Test:			
Uni	Test -1 Unit I ,II and III			
Uni	Test -2 Unit IV, V and VI			

Teaching S	Scheme	Examination Scheme		Credit Al	lotted
Theory hrs/week	: 04	End Semester Examination	: 60 Marks	Theory	:04
		Continuous assessment	: 40 Marks	Total Cre	dits : 04
Course Ob					
		ng of the principles behind the desi	gn of wireless com	munication sys	stems and
technologies Course Pro					
		knowledge of			
		& communication system			
Course Ou		,			
Students w					
/		cellular architecture.			
		tiple access schemes & IEEE80			
		ogy channel interference in path			
		nology switching and traffic sys	stem.		
5) Analyze		nology HEPERLAN & Android	system		
UNIT-I		ction to Mobile Communicatio	•		(Hours)
01111-1	Introduc	ction to Wiobite Communication	11		(Hours)
	Cellular	mobile architecture overview a	and cellular syste	m design,	08
	Frequen	cy management and channel as	signment, Frequ	ency reuse	
	channels	, concepts of cell splitting, ha	andover in cellul	ar system,	
	handoff	algorithms and dropped calls.			
UNIT-II	Multiple	e Access Schemes			(Hours)
	SDMA,	FDMA, TDMA, CDMA, comp	arison of S/T/F/C	DMA	08
		terminals signal separation and			
		tages; IEEE 802.11 & 802.16 w	•	System	
	architect	_			
UNIT-III	Propaga	ntion Path Loss and Propagati	on Models		(Hours)
· -		nel & Non-co-channel interference			08
		nce areas in system, reduction of			
		t types of non-co channel interf			
		nterference and in turn improve			
UNIT-IV	Switchin	ng and traffic			(Hours)
		description, Special features for	handling traffic.		08
		g systems, systems enhancement	•		-
		J, J 2111011	,		

		mobility management.					
UNI	Γ-V	Practical Cellular Mobile system-GSM	(Hours)				
		Cellphone generations 1G, 2G, 3G, Standards for wireless	08				
		communication system UMTS etc; GSM architecture and					
		interfaces, GSM subsystems, mapping of GSM layers on to OSI					
		layers. CDMA: Major attributes IS-95 system architecture, air					
		interface, physical and logical channel and call processing.					
UNI	Γ-VI	Wireless Local Area Networks	(Hours)				
		Introduction, Types of WLANs, Hidden station problem,	08				
		HIPERLAN Type 1: HIPERLAN/1 MAC sublayer, HIPERLAN/1					
		CAC layer, HIPERLAN/1 physical layer. IEEE 802.11 WLAN					
		standards: IEEE 802.11 physical layer, IEEE 802.11 MAC					
		sublayer. IEEE 802.11 and HIPERLAN standards for 5 GHz band:					
		HIPERLAN/2 physical layer, HIPERLAN /2 data link control layer.					
		Bluetooth: Introduction, User Scenario, Architecture, protocol.					
	Introduction to Android Layers, android components, mapping						
Text	Books:						
1)	Willia	am C.Y.Lee, "Mobile cellular Telecommunication", 2nd Ed. McGraw-Hill Ÿ					
2)	Joche	en Schiller, "Mobile Communication" Pearson Education Ÿ					
3)	V. K.	Garg, J. E. Wilkes, "Principle and Application of GSM", Pearson Educ	cation				
Dofor	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Doolean					
1)	rence I	Garg, "IS-95 CDMA &CDMA 2000", Pearson Education					
,							
Dream		rank Ableson,Robi sen, Chris King, "Android IN ACTION", Third Edition, ntech Press					
3)		le Computing By Rajkamal (Oxford).					
		r Unit Test:					
Unit'	Test -	Unit I ,II and III					
	Test -	Unit IV, V and VI					

M.Tech (IT) Semester - I Subject: MOBILE NETWORKS AND COMMUNICATION						
Teaching S	cheme	Examination Scheme		Credit	Allotted	
	04	End Semester Examinatio	n : 60 Marks	Theory	:04	
hrs/week						
		Continuous assessment	: 40 Marks	Total C	redits : 04	
Course Ob	iectives:	Continuous assessment	: 40 Mai Ks	Total C	reurs : 04	
		ng of the principles behind the d	esign of wireless com	munication	systems and	
technologies.		ing of the principles semine the d	esign of whereas com		systems and	
Course Pre						
		knowledge of				
		& communication system				
Course Out	tcome:					
Students w						
1) Understa	nd mobile o	cellular architecture.				
		tiple access schemes & IEEE		-		
		ogy channel interference in pa				
		nology switching and traffic s	system.			
5) Analyze t						
6) Understar	nd the tech	nology HEPERLAN & Andro	oid system.			
UNIT-I	Introduc	tion to Mobile Communication	tion		(Hours)	
	Cellular	mobile architecture overview	and cellular system	n design,	08	
	Frequenc	cy management and channel	assignment, Freque	ncy reuse		
	channels	, concepts of cell splitting,	handover in cellula	ır system,		
		algorithms and dropped calls.		•		
UNIT-II	Multiple	e Access Schemes			(Hours)	
	SDMA, I	FDMA, TDMA, CDMA, con	nparison of S/T/F/C	DMA	08	
		terminals signal separation a				
		tages; IEEE 802.11 & 802.16	•	System		
	architectu		II I	2 , 3 (0111		
		MI V.				
UNIT-III	Propaga	(Hours)				
	Co-chann	nel & Non-co-channel interfere	ence: Exploring co-cl	hannel	08	
		interference areas in system, reduction of co channel interference,				
Different types of non-co channel interferences, different way						
	reduce interference and in turn improve cell coverage.					
		in turn improv	o com co corago.			
UNIT-IV	Switchin	ng and traffic			(Hours)	

		Lag					
	General description, Special features for handling traffic, Small	08					
	switching systems, systems enhancement, resource allocation and						
	mobility management.						
UNIT-V	Practical Cellular Mobile system-GSM	(Hours)					
	Cellphone generations 1G, 2G, 3G, Standards for wireless	08					
	communication system UMTS etc; GSM architecture and						
	interfaces, GSM subsystems, mapping of GSM layers on to OSI						
	layers. CDMA: Major attributes IS-95 system architecture, air						
	interface, physical and logical channel and call processing.						
UNIT-VI	Wireless Local Area Networks	(Hours)					
	Introduction, Types of WLANs, Hidden station problem,	08					
	HIPERLAN Type 1: HIPERLAN/1 MAC sublayer, HIPERLAN/1						
	CAC layer, HIPERLAN/1 physical layer. IEEE 802.11 WLAN						
	standards: IEEE 802.11 physical layer, IEEE 802.11 MAC						
	sublayer. IEEE 802.11 and HIPERLAN standards for 5 GHz band:						
	HIPERLAN/2 physical layer, HIPERLAN /2 data link control						
	layer. Bluetooth: Introduction, User Scenario, Architecture,						
	protocol. Introduction to Android Layers, android components,						
	mapping application to process. Android development basics.						
	Hardware tools, Software tools, Android SDK features						
Text Books:							
	m C.Y.Lee, "Mobile cellular Telecommunication", 2nd Ed. McGraw-	Hill Ÿ					
2) Jochen	n Schiller, "Mobile Communication" Pearson Education Ÿ						
3) V. K.	Garg, J. E. Wilkes, "Principle and Application of GSM", Pearson Edu	cation					
Reference Books:							
2) W. Fr	W. Frank Ableson, Robi sen, Chris King, "Android IN ACTION", Third Edition,						
	Dreamtech Press						
3) Mobile Computing By Rajkamal (Oxford).							
	Syllabus for Unit Test:						
Unit Test -1 Unit I, II and III							
Unit Test -2	Unit Test -2 Unit IV, V and VI						

Proposed Structure of M.Tech Information Technology CBCS Pattern (2015-16)

STRUCTURE & EXAMINATION PATTERN

MTech - Information Technology

Semester II Total Duration: 20 Hrs/Week

Total Marks: 500 Total Credits: 18

Subjects	Teaching Scheme (Hrs) Hrs./Week		ects Scheme (Marks)					Examination Scheme (Credits)		Total Credits	
	L	P	Theory	Unit Test	Attendance	Tutorial/ assignme nts	T W	Pra ct/ Ora l	ТН	TW/ PR/ OR	
Research Foundation	04		60	20	10	10			04		04
Information Retrieval	04	02	60	20	10	10	25	25	04	01	05
Real Time Systems	04		60	20	10	10			04		04
Information Security	04	02	60	20	10	10	25	25	04	01	05
Total	16	04	240	80	40	40	50	50	16	02	18

M.Tech IT Semester II Subject: Research Foundation						
Teaching Scheme	Examination Scheme		Credit Allotted			
Theory : 04 hrs/week	End Semester Examination	: 60 Marks	Theory : 04			
	Continuous assessment	: 40 Marks	Total Credits: 04			

Course Objectives:

- 1) Assist students in planning and carrying out research projects, further research oriented studies or jobs
- 2) The students are exposed to the principles, procedures and techniques of implementing a research finding.
- 3) Students involve with finding out the literature using information technology / computer technology and with using the tools for data analysis in various sectors, and writing the reviews, papers, reports and thesis.

Course Prerequisites:

Students should have knowledge of

- 1) Problem definition
- 2) Project Preparation and publications
- 3) Mathematical and Statistical Analysis

Course Outcome:

Students will be able to:

- 1) Define and describe the research, research process and research methods.
- 2) Understand and apply research methods including design, data analysis, and interpretation.
- 3) Project Report, and Research Paper writing

UNIT-I	Research Idea	(Hours)
	Introduction to research. Research: objectives, motivation, types, approaches, methods and methodology. Research and scientific method.	08
UNIT-II	Research Processes	(Hours)
	How research is done, research processes, research criteria, research problem definition, problem selection, need of defining the problem, techniques involved in defining a problem.	08
UNIT-III	Research Design	(Hours)
	Research design: idea, why research designs, characteristics of design, types of designs, experimental design.	08
UNIT-IV	Novelty	(Hours)
	Novelty and Originality in Research: Resources, skills, time management, role of supervisor and research scholar, interaction with subject experts.	06
UNIT-V	Paper, Thesis and Report Writing	(Hours)
	Thesis Writing: Title, Abstract, Introduction, Literature review / previous works, Methodology, Result / Data analysis, Comparisons	08

	with earlier works, Conclusion, Future Scopes and References (IEEE /							
	Springer / ACM / Elsevier formats).							
	Importance of literature review, source of literature: books, journals,							
	proceedings, thesis and dissertations, unpublished documents.							
	On-line Searching: Database, SciFinder, Scopus, Science Direct,							
	Searching research articles, Citation Index, Impact Factor, H-index.							
UNI	T-VI Tools	(Hours)						
	Analytical tools, Introduction to data analysis, linear data and non-	10						
	linear data, exponential type data, logarithmic type data, power							
	function data and polynomials of different orders.							
	Plotting and fitting of linear, Non-linear, Gaussian, Polynomial, and							
	Sigmoidal type data.							
	Quantitative Techniques: Steps of quantitative analysis, reliability of							
	the data, errors classification, accuracy, precision, statistical errors.							
	LaTeX: Writing scientific report, research report, revision, writing							
	project proposal, paper writing for international journals, conference							
	presentation, Slides preparation, pictures, graphs and citation styles.							
		<u> </u>						
Assi	ignment List:							
1)	Briefly describe the different steps involved in a research process.							
	What do you mean by research? Explain its significance in modern times.							
2)	Write short notes on:							
	Design of the research project;							
	Ex post facto research;							
	Motivation in research;							
	Objectives of research;							
	Criteria of good research;							
	Research and scientific method.							
3)	Describe the different types of research, clearly pointing out the difference	hatwaan an						
3)	experiment and a survey.	detween an						
4)	What is the necessity of defining a research problem? Explain.							
5)	Explain the meaning of the following in context of Research design:							
3)	(a) Extraneous variables;							
	(a) Extraneous variables, (b) Confounded relationship;							
	(c) Research hypothesis;							
	(d) Experimental and Control groups;							
6	(e) Treatments.	anthod of						
6)	Distinguish between an experiment and survey. Explain fully the survey n	nemod of						
	research.							
7)	Write short notes on the following:							
	(a) Cross tabulation;							
	(b) Discriminant analysis;							
	(c) Coefficient of contingency;							
	(d) Multicollinearity;							
	(e) Partial association between two attributes.							
8)	5. Distinguish between the following:							
~ /								

(a) Statistic and parameter; (b) Confidence level and significance level; (c) Random sampling and non-random sampling; (d) Sampling of attributes and sampling of variables; (e) Point estimate and interval estimation. 7. 8. In a sample of 400 people, 172 were males. Estimate the population proportion at 95% confidence level. (a) 500 articles were selected at random out of a batch containing 10000 articles and 30 were found defective. How many defective articles would you reasonably expect to find in the whole batch? (b) In a sample of 400 people, 172 were males, Estimate the population proportion at 95% confidence level. "We can teach methods of analysis, yet any extensive research... requires something 10 equally important: an organisation or synthesis which provides the essential structure into which the pieces of analysis fit." Examine this statement and show how a good research report may be prepared. **Text Books:** C. R. Kothari, Research Methodology Methods and Techniques, 2nd. ed. New Delhi: New Age International Publishers, 2009. 2) P. Oliver, Writing Your Thesis, New Delhi: Vistaar Publications, 2004. **Reference Books:** R. Panneerselvam, Research Methodology, New Delhi: PHI, 2005. 2) F. Mittelbach and M. Goossens, The LATEX Companion, 2nd. ed. Addison Wesley, 2004. J. W. Creswell, Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, 3nd. ed. Sage Publications, 2008. Kumar, Research Methodology: A Step by Step Guide for Beginners, 2nd. ed. Indian: PE, 4) 2005. B. C. Nakra and K. K. Chaudhry, Instrumentation, Measurement and Analysis, 2nd. ed. 5) New Delhi: TMH publishing Co. Ltd., 2005. Gregory, Ethics in Research, Continuum, 2005. **6**) **Syllabus for Unit Test: Unit Test -1** Unit I,II and III **Unit Test -2** Unit IV, V and VI

M.Tech IT Semester II	Subject: Information Retr	rieval	
Teaching Scheme	Examination Scheme		Credit Allotted
Theory : 04 hrs/week	End Semester Examination Marks	60	Theory :04
Practical :02	Continuous assessment Marks	40	Practical : 01
	Term Work:25 Marks		
	Prat/Oral: 25 Marks		Total Credits: 05

- 1) To provide students with an overview of the main principles and methods underlying the domain of Information Retrieval.
- 2) To address more recent developments in IR such as collaborative filtering and Latent Semantic Indexing.

Course Prerequisites:

Students should have knowledge of

- 1) Basic basic information retrieval techniques.
- 2) Data Structures and Algorithm Analysis

Course Outcome:

- 1) Understand the impact on web of information retrieval.
- 2)) Understand basic information retrieval models.
- 3) understand experimental evaluation of information retrieval
- 4) understand information retrieval implementation in search engines
- 5) understand language-model based retrieval
- **6)** understand Information Extraction and Integration

UNIT-I	Introduction	(Hours)
	Goals and history of IR. IR Basics: inverted index, query and	08
	document representations, boolean retrieval, simple tf/idf and other	
	ranking schemes.	
	The impact of the web on IR. Information behavior, browsing vs	
	seeking, types of search	
UNIT-II	Basic IR Models	(Hours)
	Boolean and vector-space retrieval models; ranked retrieval; text-	08
	similarity metrics; TF-IDF (term frequency/inverse document	
	frequency) weighting; cosine similarity.	
	Basic Tokenizing, Indexing, and Implementation of Vector-Space Retrieval:	
	Simple tokenizing, stop-word removal, and stemming; inverted	
	indices; efficient processing with sparse vectors; Java	
	implementation.	

UNIT-	III Experimental Evaluation of IR	(Hours)	
01111	Performance metrics: recall, precision, and F-measure; Evaluations on	08	
	benchmark text collections.		
	Query Operations and Languages:		
	Relevance feedback; Query expansion; Query languages.		
	Text Representation:		
	Word statistics; Zipf's law; Porter stemmer; morphology; index term		
	selection; using thesauri. Metadata and markup languages (SGML,		
	HTML, XML).		
UNIT-		(Hours)	
	Search engines; spidering; metacrawlers; directed spidering; link	08	
	analysis (e.g. hubs and authorities, Google PageRank); shopping		
	agents.		
	Text Categorization: Categorization algorithms: Rocchio, nearest		
	neighbor, and naive Bayes. Applications to information filtering and		
TINITED	organization.	(11	
UNIT-	0 0	(Hours)	
	Using naive Bayes text classification for ad hoc retrieval. Improved smoothing for document retrieval.	08	
	smoothing for document fetrieval.		
	Text Clustering : Clustering algorithms: agglomerative clustering; k-		
	means; expectation maximization (EM). Applications to web search		
	and information organization.		
UNIT-	VI Recommender Systems	(Hours)	
	Collaborative filtering and content-based recommendation of	08	
	documents and products.		
	Information Extraction and Integration:		
	Extracting data from taxts compute weeks as leasting and into continue		
	Extracting data from text; semantic web; collecting and integrating specialized information on the web.		
Accion	ment List:		
	tudy impact of Information retrieval on web		
	· · · · · · · · · · · · · · · · · · ·		
	Write a program to analyze recall and F-measure top 3 popular search engines.		
	nalyze working of open source crawlers.		
	mplement naïve bayes algorithm to retrieve the data		
	Vrite a program to implement k-means algorithm.		
9) V	Vrite a program to design dynamic forms for collaborative filtering		

10)	Write a pro	ogram to to collect feedback using various recommendation techniques	
Text	t Books:		
1)	Introduc	tion to Information Retrieval, by C. Manning, P. Raghavan, and H. Schütze.	
	Cambrid	ge University Press, 2008	
Refe	erence Boo	oks:	
1)	Search E	ngines: Information Retrieval in Practice by W. Bruce Croft, Donald Metzler,	
	and Trevor Strohman		
2)	Introduction to Information Retrieval, Christopher D. Manning, Prabhakar Raghavan,		
	and Hinrich Schutze, Cambridge University Press. 2008		
Sylla	abus for U	nit Test:	
Unit	Test -1	Unit I ,II and III	
Unit	Test -2	Unit IV, V and VI	

M.Tech IT Semester II	Subject: Real Time System	ems	
Teaching Scheme	Examination Scheme		Credit Allotted
Theory : 04 hrs/week	End Semester Examination	: 60 Marks	Theory :04
	Continuous assessment	: 40 Marks	
			Total Credits: 04

- 1) The aim of the course is to introduce the student to the theory of formal verification methods and techniques used for real time systems.
- 2) This course provides a comprehensive introduction to understand the underlying principles, techniques and approaches which constitute a coherent body of knowledge in Real Time System.

Course Prerequisites:

Students should have knowledge of

- 1)Basic understanding of C.
- 2) Basic understanding of Computer Architectures.
- 3) Basic understanding of Operating Systems

Course Outcome: Real time system is one of class of f complex systems whose performance must be analyzed at the earlier phases of development. The methods and techniques in this course are widely used now a day in industries for these verifications of Real Time System. The students would have then a strong background of modeling, simulation and verification..

- 1) Clearly differentiate the different issues that arise in soft and hard real-time systems. Explain the various concepts of time that arise in real-time systems.
- 2) Understand basic multi-task scheduling algorithms and approaches for scheduling.
- **3**) Understand basic for periodic, aperiodic, and sporadic tasks as well as understand the impact of the latter two on scheduling.
- **4**) Able to understand the desired language characteristics of real time programming languages.
- **5**) Clearly differentiate the Real Time Vs Gerenal Purpose Databases.
- **6**)Understand the real time communication.protocols.

UNIT-I	Introduction	(08 Hours)
	Real time Applications, Hard Versus Soft Real Time Systems, A reference	
	model of Real Time Systems ,Issues in Real-Time Computing, Structure of	
	real time systems, Task Classes, characterizing Real -Time Systems:	
	Performance Measures for Real Time Systems., Estimating Program Run	
	Times	
UNIT-II	Real Time Scheduling	(08 Hours)
	Approaches to Real Time Scheduling: Clock Driven Approach, Weighted	
	Round Robin Approach, Priority Driven Approach	
	Scheduling: Introduction, Classical Uniprocessor Scheduling - Rate	
	Monotonic scheduling Algorithm, Preemptive Earliest Deadline First(EDF)	
	Algorithm	
	Uninvestigate asheduling of IDIC tooks Identical Linear Deviced	
	Uniprocessor scheduling of IRIS tasks-Identical Linear Reward	

	Concave Reward Function, Non identical Concave Reward Function,	
UNIT-II	Task Assignment	(08 Hours)
	Utilization Balancing Algorithm, A Next – Fit Algorithm for RM	
	Scheduling, A Bin – Packing Assignment Algorithm for EDF, A Myopic	
	Offline Scheduling (MOS) Algorithm, The Buddy Startegy, Assignment and	
	Precedence Conditions.	
UNIT-IV	Programming Languages and Tools	(08 Hours)
	Introduction, Desired language characteristics, Data Typing, Control	
	Structures, Facilitating Hierarchical Decomposition, Packages, Run Time Error	
	Handling, Multitasking, Task Scheduling, Timing specifications, Experimental	
	Languages:Flex,Euclid	
	Run Time Support:Compiler,Linker,Debuuger,Kernel	
UNIT-V	Real Time Databases	(08 Hours)
	Introduction,Real Time Vs Gerenal – Purpose Databases,Main memory	
	databases, Transaction Priorities, Transaction Aborts, Concurrency Control	
	Issues, Disk Scheduling Algorithm, A Two-Phase Approach to improve	
	predictability, Mainaining serilalisation Consistency, Databases for Hard real	
	Time systems.	
UNIT-V	Real Time Communication	(08 Hours)
	Introduction, Model Of Real Time Communication, Priority based Service	
	Disciplines for switched network, Weighted Round Robin service	
	disciplies, Medium Access control protocols of Broadcast networks, Real Time	
	Protocols, Communication in multicomputer systems	
Text Boo		
1) C.	M.Krishna, Kang G.Shin "Real Time Systems", Tata McGraw Hill Edition	
2) Jane	W.S.Liu,"Real Time Systems" Pearson Educatio	
Reference	e Books:	
	-Time Systems: Theory and Practice Kindle Edition by Rajib Mall	
	for Unit Test:	
Unit Tes	,	
Unit Tes	t -2 Unit IV, V and VI	

M.Tech IT Semes	ter II Subject :Informati	on Security	
Teaching Scheme	Examination Scheme		Credit Allotted
Theory: 04 Hrs/week	End Semester Examination	: 60 Marks	Theory: 04
Practical :02 Hrs/week	Continuous assessment	: 40 Marks	Practical: 01
	Term Work	: 25 Marks	Total Credits:05
	Prat/Oral 25 Marks	:	
	1		-

 Discuss various administrative, technical, governance, regularity and policy aspects of Information Security Management. • Provide hands on approaches will be discussed to better understand and to devise strategies related to security policy.

Course Prerequisites:

Students should have knowledge of

1 Fundamentals of Telecommunication and computer networks.

Course Outcome:

- 1) Understand mathematical formulation in security algorithms.
- 2) Understand aspect of information security management including planning, process, policy, procedure and security model as well as hardware and software technologies to safeguard organizational assets.
- 3) develop skills of security management progression within an organization.
- 4) Perform email and graphic image recovery as well as investigations.
- 5) Implement cryptography algorithms.
- **6)** Learn business continuity planning concepts.

UNIT-I	MATHEMATICAL FOUNDATIONS OF INFORMATION SECURITY:	(6 Hours)
	Topics in elementary number theory: O and Ω notations ,Euclidean algorithm ,Congruence's, Euler's phi function , Fermat's Little Theorem , Chinese Remainder Theorem , Applications to factoring ,finite fields , quadratic residues and reciprocity: Quadratic residues ,Legendre symbol , Jacobi symbol. Simple Cryptosystems: Enciphering Matrices, Encryption Schemes, Symmetric and, Asymmetric Cryptosystems, Cryptanalysis, Block ciphers, Use of Block Ciphers, Multiple Encryption, Stream Ciphers, Affine cipher, Vigenere, Hill, and Permutation Cipher, Secure Cryptosystem.	
UNIT-II	SECURITY ELEMENTS:	(6 Hours)
	Authorization and Authentication - types, policies and techniques - Security certification - Security monitoring and Auditing - Security Requirements Specifications - Security Polices and Procedures, Firewalls, IDS, Log Files, Honey Pots .Access control, Trusted Computing and multilevel security - Security models, Trusted Systems, Software security issues, Physical and infrastructure security, Human factors - Security awareness, training, Email and Internet use policies, Third Party Development - Intellectual Property Issues.	
UNIT-III	INFORMATION SECURITY POLICIES: INDUSTRIES PERSPECTIVE: Introduction to Information Security Policies, About Policies, why Policies are Important, When policies should be developed, How	(6 Hours)
	Policy should be developed - Policy needs – Identify what and from	

	of 150 17799 Standard. Legal and Edifical Issues.	
	of ISO 17799 Standard. Legal and Ethical issues.	
	VMware,Security testing tool BackTrack, Audit Tools: NESSUS and NMAP. Information Security Standards and Compliance: Overview	
	storage. Computer forensics: techniques and tools. Forensic tools	
	tragedy. Backup and recovery techniques for applications and	
	Business continuity planning and disaster recovery. Case study: 9/11	
	: Introduction to information security audit and principles of audit.	
UNIT-VI	AUDITING AND BUSINESS CONTINUITY PLANNING	(6 Hours)
TINITED TO	A LIDUDING AND DEIGNIEGO CONTRINUENT DE ANNUNC	((II)
	cryptosystems, elliptic curve primality test, elliptic curve factorization.	
	Algebraic Geometry: Elliptic curves, basic facts, elliptic curve	
	fraction method, the quadratic seieve method. Number Theory and	
	rho (γ) method, Format factorization and factor bases, the continued	
	Zero-Knowledge Protocols . Primality and Factoring: Pseudo primes , the	
	RSA, ElGamal Encryption, Discrete Logarithm, Knapsack problem,	
	The idea of public key cryptography, RSA Cryptosystem, Bit security of	
UNIT-V	PUBLIC KEY CRYPTOSYSTEMS:	(6 Hours)
	Information Security Planning.	
	identification - Threat Analysis - Threat Modeling - Model for	
	sources and assessment- Vulnerability assessment tools -Threat	
	Security threat correlation – Threat awareness - Vulnerability	
	Security Threat Management: Risk Assessment - Forensic Analysis -	
	threats - Intruders and Hackers, Insider threats, Cyber crime	
	vulnerabilities – Consequences of threats- E-mail threats - Web-	
01111-11	Sources of security threats- Motives - Target Assets and	(o Hours)
UNIT-IV	SECURITY THREATS:	(6 Hours)
	Responsibilities – Role of Information Security Department.	
	and Policies – Incident Response and Forensics - Management	
	Archival storage and disposal of data - Intellectual Property rights	
	whom it is being protected, Data security consideration, Backups,	

Assignment List:

- Assume a web-based system that has a state-less front-end web server (which just processes requests as it is with no state being tracked), an application engine (such as a Java servlet engine) that receives requests forwarded by the front-end, and a database that is used store/retrieve/manage data by the application engine. The application engine hosts application for a bank. The web-based system allows for a user to carry out online transactions, online viewing of accounts as well as other common tasks.

 (a) What types of logging mechanisms should be used for the front-end, the application engine, and for the database in order to audit the requests received, their processing, and the
 - (b) What auditing should such a system support?

privilege modes/user ids in which requests are processed.

Pretend you've just seen a new type of malware that places the malicious code in an audio file, by using different frequencies to correspond to different instructions. Existing vulnerabilities are used to get access to the system and install a small interpreter that reads the infected audio files and executes them. Assume that you are unable to detect/prevent the interpreter (and that it doesn't do anything harmful by itself anyway) - your job is to detect or prevent it from executing malicious audio files. (a) List one or more ways you could detect an infected audio file. Provide a brief (one paragraph) description of each approach. Write a program to perform substitution ciphers to encrypt the explain text to Caesar cipher and to decrypt it back to plain text. **4.** Write a program to generate Symmetric Keys for the following Cipher algorithms DES, AES, Blowfish, TripleDES. Write a program to encrypt input string by using SecretKey of the following algorithms, and then decrypt the encrypted string and compare the decrypted string with the input string. Use the following algorithms for encryption and decryption: a.RSA b.AES c.DSA **6.** Write a program to perform transposition ciphers to encrypt the plain text to cipher and to decrypt it back to plain text using Simple Columnar technique. Assignment based on the presentation on either of following topics: 7. ISO 17799 Standard **NESSUS** and **NMAP** Audit Tools **ElGamal Encryption** Asymmetric Cryptosystems **8.** Case study on secure configuration of Email Server. **Text Books:** Neal Koblitz, "A Course in Number Theory and Cryptography", 2nd Edition, Springer, 1) 2002. Johannes A. Buchman, "Introduction to Cryptography", 2nd Edition, Springer, 2004. 2) Serge Vaudenay, "Classical Introduction to Cryptography – Applications for 3) Communication Security", Springer, 2006. Victor Shoup, "A Computational Introduction to Number Theory and Algebra", 4) Cambridge University Press, 2005. William Stallings and Lawrie Brown, "Computer Security: Principles and Practice", 5) Prentice Hall, 2008. Thomas Calabres and Tom Calabrese, "Information Security Intelligence: Cryptographic **6**) Principles & Application", Thomson Delmar Learning, 2004. **Reference Books:** 1) .Nina Godbole, Information Systems Security-Security Management, Metrics, Frameworks and Best Practices, Wiley, 2009 Information Security Policies, Procedures, and Standards: Guidelines for Effective 2)

	Information Security Management (Paperback) Auerbach,1st edition, 2001	
3)	Neal Koblitz, "A Course in Number Theory and Cryptography", 2 nd	
	Edition, Springer, 2002.	
4)	Swiderski, Frank and Syndex, "Threat Modeling", Microsoft Press, 2004.	
Sylla	abus for Unit Test:	
Unit	Test -1 Unit I ,II and III	
Unit	Test -2 Unit IV, V and VI	

Proposed Structure of M.Tech Information Technology CBCS Pattern (2015-16)

STRUCTURE & EXAMINATION PATTERN

MTech - Information Technology

Semester III	Total Duration: 28 Hrs/Week
5011105001 111	100012010011.201115/ // 0011

Total Marks: 475 Total Credits: 40

Subject Teaching Scheme (Hrs) Hrs./Wee		eme (rs)	Examination Scheme					Examinat ion Scheme (Credits)		Total Credits	
	L	P	The ory	Unit Test	Attenda nce	Tutori al/assi gnmen ts	TW	Pract/ Oral	T H	TW/ PR/ OR	
Elective –I	04	02	60	20	10	10	25	25	04	01	05
Elective –II	04	02	60	20	10	10	25	25	04	01	05
Self-Study Paper-I	04		60	20	10	10	-	-	04	-	04
Dissertation Stage –I	-	07	-	-			25			21	21
Seminar	-	05	-	-			25	25	-	05	05
Total	12	16	180	60	30	30	100	75	12	28	40

Elective – I	Elective - II
Natural Language Processing & Understanding	Bio-informatics
 Computer Forensics & Cyber Laws 	 Advanced Computer Architecture
 Advanced MIS 	 Usability Engineering
 Wireless Networks 	 Advanced Database Management
 Data Warehousing & E-Commerce 	 Advanced Operating System

M.Tech IT Semester III ELECTIVE I: Natural Language Processing And Understanding					
Teaching Scheme	Examination Scheme		Credit Allotted		
Theory : 04 hrs/week	End Semester Examination	: 60 Marks	Theory :04		
Practical: 02 Hrs	Continuous assessment	: 40 Marks	Practical : 01		
	Term Work	:25 Marks			
	Prat/Oral	: 25 Marks	Total Credits: 05		

- 1. To understand natural language processing and to learn how to apply basic algorithms in this field.
- 2. To conceive basics of knowledge representation, inference, and relations to the artificial intelligence.
- **3.** To get acquainted with the algorithmic description of the main language levels: morphology, syntax, semantics, and pragmatics, as well as the resources of natural language

Course Prerequisites:

Students should have knowledge of working of compiler phases

Course Outcome:

- 1. Evaluate language technology components.
- 2. Understand various parsing methodologies.
- 3. Understand various language models and relate them in probability perspective.
- **4.** Map and solve the language parsing problem with dynamic programming.
- 5. Understand machine learning techniques and can assess which ones are suitable for a given problem.

UNIT-I	Introduction and Overview:	(08 Hours)
	Introduction, Overview and Linguistics, Grammars and Languages, Basic Parsing	nours)
	Techniques, Semantic analysis and Representation Structures, Natural	
	Language Generation, Natural Language Systems, What is Natural Language	
	Processing ?, Ambiguity and Uncertainty in language.	
UNIT-II	Parsing and CFG:	(08 Hours)
	String Edit Distance and Alignment:	
	Key algorithmic tool: dynamic programming, First a simple example, its use in optimal	
	alignment of sequences. String edit operations, edit distance, examples of use	
	in spelling correction, machine translation.	
	Context Free Grammars:	
	Constituency, CFG definition, use and limitations. Chomsky Normal Form.	
	Top-down parsing; Bottom-Up Parsing, and the Problems with each. Non-probabilistic	
	model.	
	Parsing:	
	Efficient CFG parsing with CYK, another dynamic programming algorithm.	
	Designing a little grammar and parsing with it on some test data.	

UNI	T-III	Information Theory:	(08 Hours)			
		What is information? Measuring it in bits. Entropy, cross-entropy, information				
		gain. Its application to some language phenomena.				
		Language modeling and Naive Bayes:				
		Probabilistic Language modeling and its applications. Markov models. Estimating the				
		Probability of a Word, and Smoothing. Generative models of language and their				
		Application.				
UNI	UNIT-IV Hidden Markov Models :					
		Part of Speech Tagging and Hidden Markov Models:				
	The concept of Parts-of-speech, Examples, usage. The Penn Treebank and Bro					
		Corpus. Probabilistic (weighted) finite state automata. Hidden Markov models				
		(HMMs), definition and use.				
		Viterbi Algorithm for Finding Most Likely HMM Path:				
		Dynamic programming with Hidden Markov Models, and its use for part-of-speech				
		tagging, Chinese Word Segmentation, Prosody, information extraction, Weighted				
		Context Free Grammars. Weighted CYK. Pruning and Beam Search.				
UNI	T-V	Classifiers and Models:				
		Maximum Entropy:				
		The maximum entropy principle, and its relation to maximum likelihood. The need in				
		NLP to integrate many pieces of weak evidence. Maximum entropy classifiers and their				
		application to document classification, sentence segmentation, and other language				
		tasks.				
		Maximum Entropy Markov Models & Conditional Random Fields:				
		Part-of-speech tagging, Noun-phrase segmentation and information extraction				
		models that combine maximum entropy and finite-state machines. State-of-the-art				
		models for NLP.				
UNI	T-VI	Machine Translation:	(08 Hours)			
		Probabilistic models for Translating any Language into English. Alignment,				
		translation, Language generation.				
Ta4	Books:					
1 ext		sky, Dan and Martin, James, Speech and Language Processing, Prentice Hall.				
1.	Julais	bay, Dan and Martin, James, Speech and Language 1 focessing, Fichitie Hall.				
Refe	rence I					
1.	Allen,	, James, Natural Language Understanding, Second Edition, Benjamin/Cumming, 1995.				
2.	Charni	iack, Eugene, Statistical Language Learning, MIT Press, 1993.				
3.		anning, Christopher and Heinrich, Schutze, Foundations of Statistical Natural Language Processing, MIT ess, 1999.				

4.	Radford, Andrew et. al., Linguistics, an Introduction, Cambridge University Press, 1999.					
	Assignment list:					
1.	Implement part of a noisy-channel model for spelling correction.					
2.	Write regular expressions that extract phone numbers and regular expressions that extract email addresses.					
3.	Using Naïve Bayes algorithm classify selected movie review as positive or negative					
4.	Build a maximum entropy Markov model (MEMM) for identifying person names in newswire text.					
5.	Implement two translation models, IBM model 1 and IBM model 2, and apply these models to predict English word alignments.					
Syll	bus for Unit Test:					
Uni	Test -1 Unit I ,II and III					
Uni	Test -2 Unit IV, V and VI					

M.Tech IT Semester III Subject: Elective - I Advanced MIS					
Teaching Scheme	Examination Scheme		Credit Allotted		
Theory : 04 hrs/week	End Semester Examination	: 60 Marks	Theory: 04		
Practical: 02 Hrs	Continuous assessment	: 40 Marks	Practical : 01		
	Term Work	: 25 Marks			
	Prat/Oral	: 25 Marks	Total Credits: 05		

- 1) Explain the changing organizational environment and the use of information technology to manage contemporary organizations
- 2) Identify the business impacts of business and social networking
- 3) Explain the technological foundations of information systems, i.e., hardware, software and telecommunications

Course Prerequisites:

Students should have knowledge of

- 1) Information System Management
- 2) System Analysis and design
- 3) Management information system

Course Outcome:

- 1) Explain the organizational context of information systems, including decision making and information processing concepts
- 2) Identify, conceptualize, and develop solutions to prepare conceptual design report
- **3)** Based on conceptual system design the student should able to prepare detailed system design alongwith technological foundations of information systems, i.e., hardware, software, information processing.
- **4**). To understand implementation evaluation of system and pitfalls in MIS.
- 5). Identify applications of MIS in manufacturing sector.
- **6**)Understand design of business systems using contemporary tools.

UNIT-I	Introduction:	(08 Hours)
	Foundation of Information System :	
	Introduction to Information System and MIS, Decision support and decision	
	making systems, systems approach, the systems view of business, MIS organization	
	within company, Management information and the systems approach.	
	Information Technology:	
	A manager's overview, managerial overviews, computer hardware & software,	
	DBMS, RDBMS and Telecommunication.	
UNIT-II	Conceptual System Design:	(08 Hours)
	Define the problems, set systems objective, establish system constraints,	
	determine information needs, determine information sources, develop	
	alternative conceptual design and select one document ,the system concept, prepare	

UN		the conceptual design report.		
	IT-III	Detailed System Design :	(08 Hours)	
		Inform and involve the organization, aim of detailed design, project management of MIS detailed design, identify dominant and trade of criteria, define the sub systems, sketch the detailed operating sub systems and information flow, determine the degree of automation of each operation, inform and involve the organization again, inputs outputs and processing, early system testing, software, hardware and tools propose and organization to operate the system, document the detailed design, revisit the manager user.		
UN	IT-IV	Implementation Evaluation and Maintenance of the MIS:	(08 Hours)	
		Plan the implementation, acquire floor space and plan space layouts, organize for implementation, develop procedures for implementation, train the operating personnel, computer related acquisitions, develop forms for data collection and information dissemination, develop the files, test the system, cut-over, document the system, evaluate the MIS control and maintain the system. Pitfalls in MIS development.		
UN:	IT-V	Advanced Concepts in Information Systems :	(08 Hours)	
		Enterprise Resources Management(ERP), Supply Chain Management, CRM, Procurement Management System. Applications of MIS in Manufacturing sector, Service sector		
UN.	IT-VI	Designing of business systems :		
		Design of business systems using contemporary tools and methods such as SQL, CASE tools, OOD tools, etc. Advanced Case Studies in MIS.		
		Referemnce Books:		
1)	Kenr	neth C. Laudon, "Management Information Systems", Eighth Edition, PHIŸ		
1)	Kenr			
1)	Kenr James (neth C. Laudon, "Management Information Systems", Eighth Edition, PHIŸ		
1) 2) 3)	Kenr James (neth C. Laudon, "Management Information Systems", Eighth Edition, PHIŸ D'Brien and George Marakas, "Management Information Systems z, "Management Information Systems", Course TechEffy		
1) 2) 3)	Kenr James (Effy Oz	neth C. Laudon, "Management Information Systems", Eighth Edition, PHIŸ D'Brien and George Marakas, "Management Information Systems z, "Management Information Systems", Course TechEffy		
1) 2) 3) Ass: 1)	Kenr James (Effy Oz ignment Introd	neth C. Laudon, "Management Information Systems", Eighth Edition, PHIŸ D'Brien and George Marakas, "Management Information Systems z, "Management Information Systems", Course TechEffy List:		
1) 2) 3) Ass	James C Effy Oz ignment Introd Genera	neth C. Laudon , "Management Information Systems", Eighth Edition, PHIŸ D'Brien and George Marakas, "Management Information Systems z, "Management Information Systems", Course TechEffy List: uction to MIS		

5)	Analysis of pitfalls in MIS developement					
6)	Case study of advanced concepts in information system.					
7)	To study applications of MIS in service sector.					
8)	Design of business system using contepoarary tools and methods such as SQL.					
9)	Study of CASE tools and OOD tools.					
10	Case study of lsoftware used for building information system.					
Syll	bus for Unit Test:					
Uni	Test -1 Unit I ,II and III					
Uni	Test -2 Unit IV, V and VI					

M.Tech IT Semester III Subject: Elective-I WIRELESS COMMUNICATION NETWORK						
Teaching Sc	heme	Examination Scheme		Credit Allotted		
Theory : 0 hrs/week Practical : 0	04	End Semester Examination	: 60 Marks	Theory :04		
hrs/week						
		Continuous assessment	: 40 Marks	Practical :01		
		Term Work	:25 Marks	Total Credits: 05		
		Prat/Oral	: 25 Marks			
Course Obje	ectives:					
To gain an u	understandii	ng of the principles behind the	lesign of wireless commu	unication systems and		
technologies						
Course Prer		manuladas af				
		nowledge of				
Course Outo		g And Communication				
Students wil		•				
		: llular architecture.				
		ole access schemes & Handover	Handoff system			
		gy digital celluare system.	, mandom system.			
		ology WLAN ,Bluetooth.				
5) Understan						
		ology ADHOC & 802.16 system	m.			
•••		•				
UNIT-I		OUCTION OF WIRELESS C		(Hours)		
		es in wireless networking, Wire		08		
		Overview, evolution of cellula	•	1		
	architectu	re & operation, Performance co	riteria. Multiple access			
	schemes i	for wireless communication -T	DMA, FDMA, CDMA,			
UNIT-II		ESS NETWORK PLANNING		(Hours)		
	System ca	es management, channel assign apacity& its improvement, Handel & adjacent channel interferer	doffs & its types, roamin	g, 08		
UNIT-III	DIGITA	L CELLULAR NETWORKS		(Hours)		
	GSM arcl	hitecture& interfaces, signal proof GSM, Channels used in GSM ellular standard.	ocessing in GSM, frame	08		
UNIT-IV		ESS LAN TECHNOLOGY				

	Overview, WLAN technologies, infrared LANs, Spread Spectrum 08					
		LANs Narrowband Microwave LANs IEEE 802.11- Architecture,				
		protocols, MAC layer .MAC frame, MAC management.				
		BLUETOOTH Overview, Radio specification, Base band				
		specification, Link manager specification, logical link control &				
		adaptation protocol.				
UNIT	`-V	MOBILE DATA NETWORKS	(Hours)			
		Introduction, Data oriented CDPD networks, GPRS WIRELESS	08			
		ACCESS PROTOCOL WAP architecture, Wireless Datagram				
		,Wireless Transport layer security, wireless transaction ,Wireless				
		Session ,Wireless Application Environment ,WML				
UNIT	'-VI	Emerging Wireless Network Technology	(Hours)			
		IEEE 802.11 WLAN, ETSI HIPER LAN Technology, IEEE	08			
		802.15 WPAN Technology, IEEE 802.16 WMANTechnology,				
		Mobile Adhoc Network, Mobile IP and Mobility Management,				
		Mobile TCP, Wireless Sensor Networks, RFID Technology.				
	Books:					
1)		m C.Y.Lee, "Mobile cellular Telecommunication", 2nd Ed. McGraw-	Hill Ÿ			
2)	Jocher	n Schiller, "Mobile Communication" Pearson Education Ÿ				
3)	V. K.	Garg, J. E. Wilkes, "Principle and Application of GSM", Pearson Edu	cation			
Refer	ence B	ooks:				
1)						
2)	2) Rampantly," Mobile communication"					
3)		o Feher," Wireless digital communication", PHI, 1999				
		Unit Test:				
	<u>Γest -1</u>	Unit I ,II and III				
Unit 7	Unit Test -2 Unit IV, V and VI					

Teaching So		Examination Scheme		Credit Allotte	d
	04 hrs/week	End Semester Examination	n : 60 Marks		04
Practical : ()2	Continuous assessment	: 40 Marks	Term Work:	
		Term Work	: 25 Marks	Total Credits	: 5
		Oral/Practical	: 25 Marks		
Course Obj	ectives:				
		oing Proper Data Warehouses			
		ce Payment Mechanism and I	Risk		
		impact and potential of e-Con			
Course Pre	requisites:				
	ould have kno	owledge of			
	ion Systems	- · · · · · · · · · · · · · · · · · · ·			
,		_			
Course Out					
	ll be able to:				
		Decision Support System, Ty			
		process for Development of I			
		rehouse Concept and database	.		
/		nerce & Third Parties			
		E-Commerce Payment Mecha	anism		
6)To unders	tand E-Comme	erce payment mechanism			
UNIT-I					(House
UNII-I	Trunca of D	asiaian Cananant Caratana			(Hours
	• •	ecision Support System:	4	. 1 1. Dag	08
		e DSS hierarchy, Generalising		•	
		on type, Individual and group			
	•	y, Matching DSS to the decisi	ion Maker's Psycho	logical type, User	
	modes insti	itutional Vs ad-hoc DSS.			
	DSS Archit	tecture, Hardware and Operati	ng Systems Platform	n:	
		fining the DSS Arch. The m	•		
		puting in DSS, DSS using sha			
		e system, Open system and DS	•	•	
	DSS Softw		oo, doo usel iiitella	· · ·	
			11 C	1.114 4. 1 1	
		S software categories, stand			
				aces	1
	generators,	programming languages for I	DSS, DSS user interi		
UNIT-II	generators,	programming languages for I	DSS, DSS user interi	euces	(Hours
UNIT-II		programming languages for I z Implementing Decision Supp		uces	(Hours
UNIT-II	Building &		oort System:		
UNIT-II	Building &	t Implementing Decision Supple DSS development process,	oort System: DSS development p	project particulars.	
UNIT-II	Building & The The imple	z Implementing Decision Supp	oort System: DSS development p nversion. Overcom	project particulars.	

UNIT-III	Data Warehousing & Executive Information System Fundamentals: Definitions uses & necessity of a data warehousing, Data warehouse concepts, Executive information systems. The Data Warehouse Database: Contents of the data warehouse database, database structures, and Getting data into data warehouse, Media.	(Hours)
		08
UNIT-IV	E-Commerce & The Role of Independent Third Parties: Introduction, consulting parties & accountant's independence, CPA version project, New assurance project, New assurance services undefined by the AICTE the Elliot committee 7 the Cohen Committee, three views of E-Commerce. E-commerce integrity & security assurance, internal control framework, competition, risk assessment assurance, impact of e-commerce on the traditional assurance function, continuous auditing, third party assurance of web based e-commerce, security of data, business plitics, transactions processing integrity, privacy of data, web-site seal options, better business bearu. Trustee, veri-sign, ACSA, AICPA/CICA web trust, business practices, transaction integrity, information protection, report issuance, implication for the accounting, professional skill sets, expansion of assurance services, consulting and international services	(Hours)
		08
UNIT-V	E-Commerce & Internet: Introduction, traditional EDI system, the origin of EDI, non-EDI systems, value added network(VANS) and pre-established trading partners, partially integrated EDI systems, benefits of EDI systems, Data transfer and standards, Department of Defense transaction,. Examples, financial EDI, EDI systems and Internets, Security concerns, security of data during transmission, audit trials and acknowledgements, authentication, interact trading relationship; consumer to business, business to business, government to citizen benefits, EDI web browser transaction, software, insights EDI and internet systems. Real time EDI inventory links with suppliers, integrated delivery links with federal express, web based sales, Impact of EDI internet applications on the accounting profession, Increased complexity of auditing through the computer, integrity of reliance in the VANs, Extension of audit to trading partners systems, increased technological skill of smaller accounting firms.	(Hours)
UNIT-VI	Risk of Insecure Systems: Introduction, Overview of risks associated with internet transactions, internet associated risks risks of customers, folso, or malicious web sites.	(Hours)
	internet associated risks, risks of customers, false or malicious web sites, stealing visitor's hard id, & passwords, stealing visitor's credit card and information, spying on visitor's hard drive, theft of customer data from selling	

agents and ISPs, Privacy and use of cookies, risk to selling agents, customer impersonation, denial of service attacks, data theft, internet associated risks, sabotage by former employees, snuffers, financial fraud, down loading of data, emails proofing, social engineering, risks associated with business transaction data transferred between trading partners, intranet extranet and internet relationship, data interception, message origin authentication, proof of delivery, message integrity & unauthorized viewing of messages, timely delivery of messages, risk associated with viruses and malicious code overflows, viruses, Trojan Horses, hoaxes, buffer overflows, implication for the accounting profession, intranet internet controls web site assurance.

E-Commerce Payment Mechanism:

Introduction, the SET protocol. SET v/s SSI, version 1.0, payment gateway, Certificate Insurance, Certificate trust chain, Cryptography methods, Dual signature, the set logo, Compliance testing, Status of software implementation, version 2.0, and intermediate releases, magnetic strip cards, smart cards, Electronic cheques, The FSTC's electrons cheques, the FSTC's BIPS specification, audit implications, Electronic bill presentation & payment system.

Assignment List:

- 1) What is Decision Support System? Explain Types of Decision Support System.
- 2) Case Study: DSS Software Tools
- 3) Explain Building & Implementing Decision Support System
- 4) Case Study: Trustee, veri-sign, ACSA, AICPA/CICA web trust
- 5) Explain EDI, non-EDI systems, value added network (VANS) with example.
- **6)** What are the types of digital wallets? Explain
- 7) Relationship-Based Smart Credit Cards

Text Books and References::

- 1) | Efrem G. Mallach, "Decision support & data warehouse system", MGH International
- 2) Green Stein, FeinMan, "Electronic Commerce", MGH International
- 3) W.S.Jawadekar, "Management Information System", MGH International
- 4) Daniel Minoli, "Web Commerce technology handbook", MGH International
- 5) Mathews Leon, "The E-biz Primer- Alexis Leon", MGH International

Syllabus for Unit Test:

by habits for the fest.					
Unit Test -1	Unit I ,II and III				
Unit Test -2	Unit IV, V and VI				

Teaching S	Scheme	Examination Scheme		Credit Allo	otted
	: 04 hrs/week	End Semester Examination	: 60 Marks	Theory	: 04
Practical:	02 hrs/week	Continuous assessment	: 40 Marks	Term Work	
		Term Work	: 25 Marks	Total Credi	its: 05
		Pract/Oral	: 25 Marks		
Course Ob	iectives:				
1) Compu	ter Forensics is	a rapidly changing field. Simp systems, create new challenges			
	erequisites:				
	hould have kno	<u> </u>			
1) Practi	cal experience	of Computer Network and Net	work Security		
Course Ou					
	vill be able to:				
		outer as forensic investigator			
		ecovering data, tools used for re	ecovery		
		ing in Windows			
		echanism with the help of tools	S		
		ndit with the help of logs ection standard to the innovative	a naturanle		
UNIT-I	Overview:	ection standard to the innovativ	e network		(08 Hours)
UNII-I		Committee Founding Transport	:- C-:	C4	(08 Hours)
	_	Computer Forensic, Types of F rage device characteristics, type		_	
	Forensic Inv				
		on, investigation steps, responsi	dilities of Com	puter	
	Forensic Inv	estigator.			
UNIT-II	Evidence:				(08 Hours)
		of evidence, life cycle of eviden	ce, types of ev	idence,	
		idence, evidence.			
	Storage and	its Security Incident Response	: Introduction,		
	Investigation	ns, Pre-Incident Preparations, F	ormation of In	cident	
	Response Te	eam, Role of Incident Response	e Team.		
	Data Recove	ery: Definition of data recovery	y, data recover	y	
	mechanism,	techniques for recovering data	, tools used for	recovery.	
UNIT-III	Investigatin				(08 Hours)
	Audit logs a	nd security, system log, remote	logging, confi	guring	
	Windows, 1	ogging, setting up remote loggi	ng in Windows	s event	

		reporter and Application Logs.					
UNI	T-IV	Forensic Tools:	(08 Hours)				
		WinHex, X-Ways, Index.dat Analyzer, Data Doctor.					
		Disaster Recovery: Preparing for disaster recovery, backing up data,					
		scheduling backup jobs, restoring data, recovering from server					
	failure, selecting disaster recovery methods.						
UNI	T-V	Battling Cyber Squatters and Copyright Protection in the Cyber	(08 Hours)				
		World:	(0 0 - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
	Concept of domain name and reply to cyber squatters, meta-tagging,						
		legislative and other innovative moves against cyber squatting,					
		freedom and control on the internet, works in which copyright					
		subsists and meaning of copyright, copyright ownership and					
		assignment, license of copyright, copyright term and respect for					
		foreign works, copyright infringement, offences and remedies,					
		copyright protection and content on the internet, copyright notice,					
		disclaimer and acknowledgment, downloading for viewing					
		contents, hyper-linking and framing, liability of ISPs for copyright,					
		violation in the cyber world, legal developments in the US, Napster					
		and its cousins, computer software piracy					
UNI	T-VI	Digital Signature, Certifying Authorities and E-Governance :	(08 Hours)				
		Digital signature, digital signature certificate, certifying authorities					
		and liabilities, digital signature Governance in India.					
Assi	gnment	List:					
1)		yze various types of storage structures					
2)		rstand line of investigation in the form of steps					
3)		yze life cycle of evidence for security					
4)		y data recovery mechanism with the help of tools.					
5)	-	yze the security audit with the help of logs					
6)		yze WinHex in detail					
7) 8)		y disaster recovery techniques to preserve data y copyreight protection standard to the innovative network.					
		References:					
1)		Siegel, "Forensic Science: The Basics "					
2)	Joe Nickell and John F. Fischer, "Crime Science: Methods of Forensic Detection"						
3)	Anthony J. Bertino, "Forensic Science: Fundamentals and Investigations"						
4)		H. James and Ph. D., Jon J. Nordby, "Forensic Science: An Introduction	to Scientific				
		vestigative Techniques", 2nd edition					
5)	Colin	Evans, "The Casebook of Forensic Detection: How Science Solved 100 of	of the				
٥,			****				

	World's Most Baffling Crimes"						
6)	Edward	ard Amoroso, "Cyber Security, Computer Network Security and Cyber Ethics", 2nd					
	edition b	y Joseph Migga Kizza					
7)	Robert McCrie, "Security Operations Management", Second Edition Andy Jones and Debi						
	Ashenden, "Risk Management for Computer Security:						
8)	Andy Jo	Andy Jones and Debi Ashenden, "Risk Management for Computer Security					
Sylla	Syllabus for Unit Test:						
Unit	Unit Test -1 Unit I, II and III						
Unit	Test -2	Unit IV, V and VI					

M.Tech IT Semester III Subject: Elective II: BIOINFORMATICS					
Teaching S	cheme	Examination Scheme		Credit Allo	tted
	04	End Semester Examination	: 60 Marks	Theory	:04
hrs/week					
Practical:	02	Continuous assessment	: 40 Marks	Term Wor	k:01
		Term Work	: 25 Marks		
		Oral/Practical	: 25 Marks	Total Cred	its: 05
G 01	•				
Course Ob	-	on and historical managestive to	a the field of high	-formation	
		on and historical perspective to		normatics	
		ls and tools used in bioinforma			
		etical basis behind bioinformat			
-		ences, identify proteins, and re	trieve protein stru	ictures from d	latabases.
View ar	nd interpret th	nese structures.			
•••					
Course Pre					
		nowledge of			
1) Adva	anced Moleci	ılar Biology (or equivalent)			
	_				
Course Ou					
	ill be able to				
		concepts of Bioinformatics ze Sequence Alignment and Da	otobogo Coorobino	.	
•	stand Proteir	1 0	atabase Searching	<u> </u>	
,		n-protein Interactions and Algor	rithms		
		function and Computer tools		analysis	
3)10 under	runa i rotem	Tunetion and compater tools	for phylogenetic	anarysis	
UNIT-I	Bioinform	atics Basics:			(08
	Ва	asic concepts, Protein and an	mino acid , DN	A & RNA.	Hours)
	Sequence,	*	Bioinformatics	databases:	
		on, Motivation, Type of data			
		Protein sequence databases,		•	
		•	•	i databases,	
	Protein str	ucture databases, Other relevan	nt databases.		
UNIT-II	Seguence	Alignment and Database Search	hina:		(08
O1 111-11	•	· ·	· ·	n Doimrica	Hours)
	_	ele sequence alignments, Bio	•		Hours)
	_	s, Scoring matrix, Gap penal		_	
		n- Wunsch, Smith-Waterman,			
	BLAST, S	Statistics of sequence alignme	nt score, E-Valu	e, P-Value,	
	Multiple s		** * * * * * * * * * * * * * * * * * * *	_	

	alignment, Profile-profile alignment, PSI-BLAST, Hidden Markov Models.	
	Protein structure alignments:	
	Structure superposition, structure alignment, Different	
	structure	
	alignment algorithms.	
UNIT-III	Protein Structure:	(08
	Protein secondary structure predictions: Protein secondary structure, Hydrogen bond, secondary structure element, Methods for predicting secondary structure. Protein tertiary structure modeling:	Hours)
	Basic concepts Protein folding and dynamic simulation, Comparative modeling, Threading, Ab initio modeling, Combined	
	modeling approaches, CASP: A blind protein structure prediction competition. Experimental methods for protein structure determination:	
	X-ray crystallography, Nuclear magnetic resonance (NMR).	
UNIT-IV	Protein-protein Interactions:	(08
	Experimental identification of protein-protein interactions, Yeast two- hybrid assay, High-throughput mass spectrometry, Interaction networks and system biology.	Hours)
	Protein quaternary structure modeling:	
	Basic concepts, Degrees of freedom, Presentation of protein conformations, Hydrophobicity factor, Shape complementary, Docking Scoring function, Protein-protein docking algorithms, Protein-ligand docking algorithms, Drug design, Multiple-threading algorithms, Homology modeling of protein-protein interactions, Protein and ligand binding, CAPRI.	
TINITE X7	Biomolecular Simulations:	(08
UNIT-V	Biomolecular Simulations: Basic concepts, Units and derivatives, Force field and energy landscape, Truncation of nonbonded interactions.	(08 Hours)
	Conformational Sampling: Introduction, Minimization and algorithms, Molecular dynamics, Ensembles (statistical mechanics), Monte Carlo simulations.	

	Solvation: Introduction, Periodic boundary condition, Ewald						
			nation, Implicit solvent model and continuum electro statics, see Carlo simulation on parallel computers. Advanced				
		Monte Carlo simulation on parallel computers. Advanced Techniques: Introduction, Replica-exchange simulations, Restraint					
			atials, Free energy calculations, Membrane simulations.				
	F · · · · · · · · · · · · · · · · · · ·						
		D: 1		(00			
UN	IT-VI	Biolo	gical Membranes: Introductions, Biological roles, Structural features,	(08 Hours)			
		Mem	brane lipids, General structures, Aggregation states,	Hours)			
			morphism, Thermal transitions, Electrostatic effects, Molecular				
		dyna: prote	mics, Membrane proteins, MD simulation of Membrane ins.				
		Prote	in function:				
		Sequence to function, Structure to function, Protein function					
		identification methods and databases. Phylogenetics, Sequence-based					
		taxon	nomy, Models, assumptions, and interpretations, From multiple				
		align	ment to phylogeny, Computer tools for phylogenetic analysis.				
Ass	ignment	List:					
1)	Explain	Bioinf	ormatics Basics.				
2)	Explain	concep	pt of Sequence Alignment and Database Searching.				
3)	_		n Structure and Protein quaternary structure modeling				
4)	_		olecular Simulations.				
5)			rmational Sampling.				
6)	•	Explain in detail Biological Membranes.					
7)	Explain	Protei	n function with examples.				
Tex	Text Books and References::						
1)			"Bioinformatics", Cold Spring Harbor Press"				
2)	James Ji	sdall, '	'Beginning Perl for Bioinformatics"				
3)	David W. Mount, "Bioinformatics- Sequence & Genome Analysis"						
	labus for	Unit '		_			
	it Test -1		Unit I ,II and III				
Uni	Unit Test -2 Unit IV, V and VI						

M.Tech IT	Semester I	II Subject: Elective – II Adva	anced Computing A	Architecture
Teaching So	cheme	Examination Scheme		Credit Allotted
Theory :		End Semester Examination		Theory :04
hrs/week				
Practical: 0)2			
hrs/week				
	(Continuous assessment	: 40 Marks	Practical: 01
	7	Term Work	: 25 Marks	Total Credits : 05
	I	Practical / Oral	: 25 Marks	
The aim of t	the course is	to design distributed computing	ng architecture to im	prove the efficiency of
system.				
Course Obj				
		of distributed computing		
		lution with respect to suitable	distributed computi	ng Architecture.
Course Pre				
		nowledge of		
•		of distributed system		
Course Out				
	ill be able to			
,		l environment.		
		of distributed Architectures		
		g parameters.		
		omputing measures		
		uring the enhancement		
	suitable arc	hitecture to enhance the perfor	rmance.	
UNIT-I	Introducti	on to cloud computing		(Hours)
	Introduction	n to to various distributed com	puting architectures	- 06
	Grid, cluste	r, cloud. Structure of cloud, cor	mputing parameters	of
	cloud, boos	t in the performance due to clou	ıd.	
UNIT-II	Architectu	re of cloud computing		(Hours)
		dels – Infrastructure As a Service	e (laaS) , Platform as	· ·
		S), Software as a Service (SaaS)	, , , , , , , , , , , , , , , , , , , ,	
	35. 1.00 (1 00			
		t Models – Public cloud, private	cloud, Hybrid cloud,	
	community	cloud		
UNIT-III	Big Data			(Hours)
	Concept o	f Big Data, Challenges to d	eal with Big Data	, 06
	solution w	th respect to big data, data A	nalytics.	
UNIT-IV	Data Inter	sive Computing		(Hours)
		<u> </u>	Hadoop Distribute	

	File Structure (HDFS), data node, name node, job tracker,				
	Task Tracker.				
UNIT-V	Architecture of Map Reduce Algorithm	(Hours)			
UNII-V	Concept of unstructured data, Introduction to Map Reduce	06			
		00			
	Algorithm, Implementation with word count example.				
UNIT-VI	Case Study of advanced computing Architecture	(Hours)			
	Cloudstack, Eucalyptus, Azure, big data analytics,	06			
	Hadoop,Implementation of MapReduce -II				
Assignment	List:				
	n cluster using apache web server				
	n cloud computing environment using public cloud				
	n cloud computing environment using private cloud				
	yse the Complete data of BVUCOE using big data analytics				
	HDFS to deal with huge data.				
	ement Map Reduce Algorithm to prove the rise in the efficien	ncy			
	ement Map Reduce II				
8) Analy	yze various computing environments like cloudstack , opensta	ack.			
Text Books:	•				
	itecture the cloud, Michael J. Kevis, Wiley publication				
	osoft Big Data Solution, Adam Jorgensen, Wiley publication				
	op: The Definitive Guide, Tom White, O'REILLY' publication	on			
Reference 1					
	ling the Infrastructure for cloud security, Raghu Yelori, Enri	que castro-Leon			
	Iadoop Operations, Eric Sammer, O'REILLY' publication				
	IapReduce Design Patterns: Building Effective Algorithms and Analytics				
	ld Miner, O'REILLY' publication				
Syllabus for					
Unit Test -1	,				
Unit Test -2	Unit IV, V and VI				

M.Tech IT Semester III Subject: Elective II: Usability Engineering							
Teaching Scheme Examination Scheme Credit Allotted							
Theory : 04 hrs/week	: 60 Marks	Theory : 04					
Practical: 02 hrs/week	Continuous assessment	: 40 Marks	Term Work: 01				
	Term Work	: 25 Marks	Total Credits: 05				
	Pract/Oral : 25 Marks						

1) To present the basic principles and practical knowledge regarding the design, development and evaluation of human-computer interfaces in the light of usability

Course Prerequisites:

Students should have knowledge of

2) Practical experience of software system analysis and design

Course Outcome:

- 2) Define and distinguish between the different types of user interface
- 2) Develop a more usable interface
- 3) To identify techniques and technologies that can satisfy usability and accessibility specifications
- 4) To apply usability methods in developing interactive systems
- 5) To identify and analyze the various components of the overall context of use of an interactive system
- 6) To develop usability and accessibility specifications that can be used in evaluating and developing interactive systems-

UNIT-I	Introduction	(08 Hours)
	Introduction, Importance, Human computer interface, Characteristics of GUI, Direct manipulation graphical system, Web user interface, Mobile UI, Popularity of graphics Generations of User Interfaces: Batch Systems, Line-Oriented Interfaces, Full-Screen Interfaces	
UNIT-II	Development Processes	(08 Hours)
	Managing Design Processes: Organizational Design to	
	Support Usability, The three Pillars of Design,	
	Development Methodologies, Ethnographic Observation,	
	Participatory Design, Scenario Development, Social Impact	
	Statement for Early Design Review, Legal issues	
	Evaluating Interface Designs: Expert Reviews, Usability	
	Testing and Laboratories, Survey Instruments, Acceptance	
	Tests, Evaluation during Active Use, Controlled	
	Psychologically Oriented Experiments	

UNI	Γ-III User Interface Software and Specifications	(08 Hours)					
	Languages and tools for specifying and building interfaces,						
	Dialogue independence, UIMS (user interface management						
	system) approach, Languages and software abstractions for						
	user, interfaces, Programming support tools						
UNI		(08 Hours)					
	Menus: Structures, Functions, Content, Formatting of	<u> </u>					
	Menus, Phrasing the Menu, Selecting Menu Choices,						
	Navigating Menus, Kinds of Graphical Menus						
	Windows: Window Characteristics, selection of window,						
	Components of a Window, Window Presentation Styles,						
	Types of Windows, Window Management, Organizing						
	Window Functions, Window Operations, Web Systems						
UNI	• • • • • • • • • • • • • • • • • • • •	(08 Hours)					
	Interaction Styles: Question and answer, Form-based,						
	Command language Menus, Natural language, direct						
	manipulation						
	Interaction Devices : Keyboard and function keys, pointing						
	device, speech recognition digitization and generation,						
	image and video displays, drivers						
	New Interaction Techniques: New modes of human-						
	computer communication, Voice, Gesture, Eye movement,						
TINIT	Tangible, user interfaces, Brain-computer interfaces	(00 11)					
UNI	,	(08 Hours)					
	Dealing with Time Delays, Blinking for Attention, Use of						
	Sound						
	UI Guidance and Assistance: Preventing Errors, Problem Management, Providing Guidance and Assistance,						
	Instructions or Prompting, Help Facility						
Assig	nment List:						
1)	Introduction to fundamentals of Usability Engineering						
2)	Study on User Interface Software and Specifications						
3)	Design a sport watch interface						
4)	Design a web application interface for online grocery shopping						
5)	Design a touch screen interface for an Automatic Teller Machine (A	, 0					
	kids aged 10-15 whose parents have opened a savings account for						
6)	Design an interface and list user experience for a universal remote settings	to be used in home					
	settings						
Text	Books:						
1)	Shneiderman, C. Plaisant, M. Cohen, and S. Jacobs, <i>Designing the Designing the Design</i>	Jser Interface:					
	2) Simelestinan, C. I laisant, 11. Concil, and S. Jacobs, Designing the Oser Interface.						

	Strategies for Effective Human-Computer Interaction, Addison-Wesley, Reading, Mass. (any recent edition)				
2)	Y. Rogers, H. Sharp, and J. Preece, Interaction Design: Beyond Human-Computer				
	Interaction, John Wiley & Sons. (any recent edition)				
Refe	erence Books:				
1)	Don Norman, The Design of Everyday Things				
2)	Jakob Nielsen, Usability Engineering				
3)	Jakob Nielsen and Raluca Budiu, Mobile Usability				
Syllabus for Unit Test:					
Unit	t Test -1 Unit I ,II and III				
Unit	t Test -2 Unit IV, V and VI				

M.Tech IT Semester III Subject: Elective II: Advanced Database Management								
System								
Teaching S	Teaching Scheme Examination Scheme Credit Allotted							
Theory	: 04 hrs/week	End Semester Examina	tion : 60 Marks	Theory	: 04			
Practical:	02 hrs/week	Continuous assessment	Continuous assessment : 40 Marks					
		Term Work Prat/oral	: 25 Marks : 25 Marks	Total	: 05			
Course Ob	jectives:							
1) Introd	duce principles and	foundations of distributed data	bases and parallel dat	abases				
2) Und	erstand the oper	ations in Transaction man	agement					
Course Pro	•							
	hould have kno	9						
		ent system concepts and t	heir operations.					
Course Ou								
	vill be able to:							
		ted database architecture a						
		essing and optimization o						
	3) Understand the performance issues in high performance databases							
	4) Understand the working of parallel database management system							
	5) Understand the transaction management process							
	6) Understand latest advancement in database management systems							
UNIT-I	UNIT-I Distributed databases: Architecture and Design (Hours)							
	Distributed data processing, What is a DDBS; Advantages and disadvantages of DDBS, Problem areas							
	Distributed DBMS Architecture: Transparencies in a distributed DBMS, Distributed DBMS architecture, Global directory issues,							
Distributed Database Design: Alternative design methodologies and strategies, Distributed design issues, Types and role of Fragmentation, Types and role of replication, Data allocation								
UNIT-II	Distributed qu	uery processing and opti	mization		(Hours)			
	Distributed of	Query processing: Pro query, Query decomp lethodology, translation	osition, Distribu	. ,	08			

	queries	
	Distributed Optimization: Objectives of query optimization, Factors	
	governing query optimization, Ordering of fragment queries,	
	optimization of join operation, Load balancing, Distributed query	
	optimization algorithms	
	optimization algorithms	
UNIT-III	Issues and Concerns in High Performance Databases	(Hours)
	Database Tuning and Performance: benchmarking, TPC benchmarks,	08
	object oriented benchmarks, TP Monitors, TPC and Wisconsin	
	benchmarks, performance measurement, and performance tuning.	
	Semantic data Control: View management, Data security, Semantic	
	Integrity Control	
	Indexing structures: Btrees, hash files, multi-attribute indexing.	
UNIT-IV	Parallel Database Management System	(Hours)
	Introduction: Types of parallelism in database systems, Parallel Query	08
	Processing, multiprocessor architectures, parallel relational operators,	
	parallelism in main-memory DBMS, parallel handling of integrity	
	constraints, Integrated I/O parallelism	
	Parallel Query Processing and Optimization: Inter-query parallelism,	
	intra-query parallelism, intra-operation parallelism, inter-operation	
	parallelism, objectives of parallel query optimization, parallel query	
	optimization, load balancing, parallelism in join queries, testing the	
	quality of query optimization	
	quanty of query optimization	
UNIT-V	Advanced concepts in Transaction Management	(Hours)
	Transaction Management: ACID properties, pessimistic locking,	08
	optimistic locking, flat transactions, nested transactions, deadlock	
	detection and management and their algorithms, Recovery Methods	
	Concurrency control and Reliability in Distributed Dtabases:	
	Concurrency control in centralized database systems vs Concurrency	
	control in DDBSs, Distributed concurrency control algorithms,	
	Deadlock management, Reliability issues in DDBSs; Types of	
	failures, Reliability techniques, Commit protocols, Recovery protocols	
UNIT-VI	Emerging trends in databases	(Hours)
	Mobile Databases, Distributed Object Management, Multi-databases,	08
	Semantic databases, Hadoop Distributed File Systems, MapReduce	00
	Overview, NoSQL Databases, Design and Comparison of NoSQL	
	Databases, Active and Deductive databases	
L		

Assign	Assignment List:					
1)		nd implement different types of Views in SQL				
2)	Study and	implementation of all types of Joins using SQL				
3)	Implement	ration of hash files				
4)	Study of tr	ansaction and implementing transaction operations using SQL/PL-SQL				
5)	Installation and study of Hadoop.					
6)	Installation	n and study of any NoSQL database				
7)	Compariso	n and Implementation of locking techniques				
8)	Case study of the operations of any real time distributed DBMS and parallel DBMS					
Text I	Books:					
1)	Stefano Ceri and Giuseppe Pelagatti, "Distributed databases principles and systems", Tata Hill					
2)	Raghu Ramkrishnan, "Database Management System", McGraw-Hill					
3)	Silberschatz, Korth and Sudharshan, "Data base System Concepts", Mc-GrawHill					
Refere	ence Books:					
1)	M. Tamer Ö	zsu and Patrick Valduriez, "Principles of Distributed Database Systems", Springer				
	Science & B	usiness Media, 2011, 3 rd edition				
2)	Elmasri and Navathe, "Fundamentals of Database Systems", Addison-Wesley, 2007					
3)	Thomas Connolly, Carolyn Begg, "Database Systems: A Practical Approach to Design,					
	Implementation and Management ",Pearson Education, LPE					
Syllab	ous for Unit '	Test:				
Unit T	Γest -1	Unit I ,II and III				
Unit T	Γest -2	Unit IV, V and VI				

M	Took IT Comes	ton III Subjects Fleeting II	A dream and Ome	anatin a Caratana					
	M.Tech IT Semester III Subject: Elective-II- Advanced Operating System Teaching Scheme Examination Scheme Credit Allo								
	: 04 hrs/week	End Semester Examination	n · 60 Marks	Theory	: 04				
Practical		Continuous assessment	: 40 Marks	Practical	: 01				
Tractical	.02	Term Work	:25 Marks	Tractical	• 01				
		Prat/Oral	:25 Marks	Total Credi	ts · 05				
Course Objectives:									
	•	an overview of operating sys	stems with chang	re in technolog	ries and				
use	ide stadelits with	an overview or operating sy	stems with chang	ge in teemiolog	,ios and				
	erequisites:								
	hould have kno	wledge of							
	oncepts of operati								
	gorithms in opera								
Course Ou	•	<u> </u>							
Students v	vill be able to:								
1)Understa	and core structure	e of operating systems							
		operating systems.							
3) Understa	and distributed re	esource management.							
4) Understa	and multiprocess	sor and database operating sys	stems.						
5) Understa	and real time and	I mobile operating systems.							
UNIT-I	INTRODUCTION								
	Overview – Functions of an Operating System – Design Approaches –								
	Types of Advanced Operating System – Synchronization Mechanisms –								
	Concept of a Process, Concurrent Processes – The Critical Section								
	Problem, Other Synchronization Problems – Language Mechanisms for								
	Synchronization – Axiomatic Verification of Parallel Programs – Process								
	Deadlocks – Preliminaries – Models of Deadlocks, Resources, System								
	State – Necessary and Sufficient conditions for a deadlock – Systems								
	with Single-Unit Requests, Consumable Resources, Reusable Resources.								
UNIT-II	DISTRIBUTED	OPERATING SYSTEMS			(Hours)				
	Introduction	– Issues – Communicat	ion Primitives	- Inherent	08				
	Limitations - I	Lamport's Logical Clock; V	ector Clock: Cas	sual Ordering					
		Cuts; Termination Detection.		_					
		Based Algorithms – Lampor							
		•	-						
		Suzuki-Kasami's Broadca	•						
		tection – Issues – Centr							
	_	Distributed Deadlock-Detec	_	s, Agreement					
	Protocols – Cla	assification – Solutions – App	plications.						

Basic Concepts – Classification of Failures- Basic Approaches to 08 Recovery; Recovery in Concurrent Systems; Synchronous and Asynchronous Check pointing and Recovery; Check pointing in Distributed Database Systems; Fault Tolerance; Issues – Two phase and Non-blocking Commit Protocols; Voting Protocols; Dynamic Voting	Hours)
Basic Concepts – Classification of Failures- Basic Approaches to 08 Recovery; Recovery in Concurrent Systems; Synchronous and Asynchronous Check pointing and Recovery; Check pointing in Distributed Database Systems; Fault Tolerance; Issues – Two phase and Non-blocking Commit Protocols; Voting Protocols; Dynamic Voting	
Recovery; Recovery in Concurrent Systems; Synchronous and Asynchronous Check pointing and Recovery; Check pointing in Distributed Database Systems; Fault Tolerance; Issues – Two phase and Non-blocking Commit Protocols; Voting Protocols; Dynamic Voting	3
Protocols.	
UNIT-V MULTIPROCESSOR AND DATABASE OPERATING SYSTEMS (F	Hours)
Structures – Design Issues – Threads –Processing Synchronization – 08 Process Scheduling – Memory Management – Reliability / Fault Tolerance; Database Operating Systems –Introduction – Concurrency Control – Distributed Database Systems – Concurrency Control Algorithms.	1
UNIT-VI REAL TIME AND MOBILE OPERATING SYSTEMS (F	Hours)
Basic Model of Real Time Systems - Characteristics- Applications of Real Time Systems - Real Time Task Scheduling - Handling Resource Sharing - Mobile Operating Systems - Micro Kernel Design - Client Server Resource Access - Processes and Threads - Memory Management - File system.	
Assignment List:	
1)Study of hardware and software requirements of different operating systems	
2) Implement CPU scheduling policies.	
3)Implement Lamport's Algorithm - Token-Based Algorithm	
4) Implement Suzuki-Kasami's Broadcast Algorithm	
5) Study of distributed file systems – architecture	
6)Study of fault recovery and fault tolerance	
7) Implement file storage allocation techniques.	
8) Study of Concurrency Control Algorithms.	

9) C	9) Case study of mobile operating systems					
10) (Case study of real time operating systems					
Text	t Books:					
1)	Mukesh Singhal and Niranjan G. Shivaratri, "Advanced Concepts in Operating Systems –					
	Distributed, Database, and Multiprocessor Operating Systems", Tata McGraw-Hill, 2001.					
2)	Rajib Mall, "Real-Time Systems: Theory and Practice", Pearson Education India, 2006.					
Refe	Reference Books:					
1)	Abraham Silberschatz; Peter Baer Galvin; Greg Gagne, "Operating System Concepts",					
	Seventh Edition, John Wiley & Sons, 2004.					
2)	Daniel P Bovet and Marco Cesati, "Understanding the Linux kernel", 3rd edition, O'Reilly,					
	2005.					
3)	3) Neil Smyth, "iPhone iOS 4 Development Essentials – Xcode", Fourth Edition, Payload					
	media, 2011.					
Syllabus for Unit Test:						
Unit	Test -1 Unit I ,II and III					
	t Test -2 Unit IV, V and VI					
	· · · · · · · · · · · · · · · · · · ·					

Proposed Structure of M.Tech Information Technology CBCS Pattern (2015-16)

STRUCTURE & EXAMINATION PATTERN

MTech Information Tecnology

Semester IV	Total Duration: 14 Hrs/Week
-------------	-----------------------------

Total Marks: 325 Total Credits: 34

Subject	Sch (H	ching neme Irs) ./Wee k		Е	xaminatio	Examination Scheme (Credits)			Total Credits		
	L	P	Theory	Unit Test	Attend ance	Tutorial/ assignme nts	TW	Pract/ Oral	ТН	TW/P R/OR	
Self-Study Paper-II	04		60	20	10	10	-	-	04	-	04
Dissertation Stage –II	-	10	-	-		-	150	75		30	30
Total	04	10	60	20	10	10	150	75	04	30	34

List Of Self Study Subjects

Sr. No.	Self Study Paper I	Self Study Paper II
	Sem-III	Sem-IV
1	Real Time & Fault Tolerant System	Information Storage and Management
2	Ad-hoc Network	Organizational Behavior
3	Computer Oriented	Computer Vision and Digital Image
	Numerical & Statistical	Processing
	Methods	
4	Semantic Networks	Artificial Intelligence & Applications
5	Embedded System and Applications	Design and Analysis of Algorithms
6	Distributed Computing	Compiler Design
7	Information Theory Coding and Cryptography	Computer Oriented Optimization Techniques
8	Soft Computing	Information Security System

M. Tech. - 2023 Course

Rules and Regulations

(I) Theory

(A) Theory Examination

Theory examination consists of: (i) End semester examination (ESE), and (ii) Internal assessment (IA).

- (i) ESE is of 50 marks for theory courses.
- (ii) IA is of 50 marks. Following tools shall be used for evaluation of IA.
 - a) Project based learning
 - b) Quiz
 - c) Case study
 - d) Presentation (seminar)
 - e) Industrial visit and report submission
 - f) Open book test
 - g) Industry relevant problem
 - h) MCQ
 - i) System design
 - j) Modelling
 - k) Unit test

Note: 1. Each unit shall be evaluated with appropriate tool/s mentioned above.

- 2. Course coordinator shall prepare unit wise plan for conduction of IA with specifying tool and submit it to PG coordinator in the beginning of the term.
- 3. Course coordinator shall maintain documentation of IA and shall submit it to PG coordinator after completion of each unit.
- 4. Appropriate blooms taxonomy level shall be maintain while conduction and evaluation of IA.
- 5. Course coordinator shall submit the IA marksheet of 50 marks to examination section at the end of the semester.

(B) Standard of Passing

- (i) There is a separate passing of 50% of 50 marks, i.e. 25 marks, for ESE for a given course.
- (ii) There is a separate passing of 50% of 50 marks, i.e. 25, for IA for a given course.

(iii) A candidate who fails at ESE in a given course has to reappear only at ESE as a backlog candidate

and clear the head of passing. Similarly, a candidate who fails at IA in a given course has to reappear

only at IA as a backlog candidate and clear the head of passing

(II) Practical

(A) Practical Examination

Practical examination consists of: (i) Term work, and (ii) Practical/Oral examination for a given course.

(i) Term work (TW): TW marks are as mentioned in the curriculum structure.

(ii) Practical/Oral (PR/OR): PR/OR marks are as mentioned in the curriculum structure.

(B) Conduction of practical/oral examination

(i) A candidate will be permitted to appear for practical/oral examination only if he/she submits term

work of a given course.

(ii) Practical/oral examination shall be conducted in the presence of internal and external examiners

appointed by university.

(C) Standard of Passing

(i) A candidate shall pass both heads TW and PR/OR separately with minimum 50% of total marks of

respective head.

(III) MOOC, Social Activity Course, and Research Paper Publication

(i) If a candidate successfully completes a MOOC in a given semester relevant to the courses in that

semester, he/ she will earn additional TWO credits in a given semester subject to submission of the

certificate of completion of the respective course. Maximum credits earned by particular student/s

will be 4 during the programme.

Following MOOC courses after appearing an examination will be considered for allotment of credits:

1. SWAYAM: www.swayam.gov.in

2. NPTEL: www.onlinecourse.nptel.ac.in

3. COURS ERA: www.coursera.org

4. edX online learning: www.edx.org

5. UDEMY: www.udemy.com

- 6. MIT Open Course ware : <u>www.ocw.mit.edu</u>
- 7. CDAC AI & AR-VR : https://futureskillsprime.in/course/basic-certificate-course-in-artificial-intelligence

MOOC (Max. Credits: 04)

Sr. No	Type of the Activity	No. of Activities	Credits Allotted	Credits Earned
1	Certification in MOOC course		2	
Tota	Credit earned =	lit earned =		

(ii) If a candidate successfully completes extracurricular activity, he/she will earn additional TWO credits in a given semester subject to submission of the certificate of completion of the respective course/ activity from the relevant authorities. Maximum credits earned by particular student/s will be 4 during the programme.

A) Extra-Curricular Activities (Max. Credits : 04)

Sr.	Type of the Activity	No. of	Credits	Credits
No		Activities	Allotted	Earned
1	Participation in Project Exhibition / Contest held at state / national / international level		0.5	
2	Winning award at the project contest as mentioned in (1)		1	
3	Participation in sports / cultural event / contest held at state / national / international level		1	
4	Wining award at the contest as mentioned in (3):		2	
5	Participation in any social activity for the betterment of poor / needy people		0.5	
Tota	Credit earned =			

(iii) For submission of thesis based on dissertation work carried out by candidate in sem III and IV, he / she has to publish two papers based on his/ her dissertation work carried out in sem III and IV one in international conference and one in UGC approved CARE journals/Journals cited in standard databases such as SCOPUS, Web of Science, any other referred journals etc. After publication of papers mentioned above, he/she will earn additional credits in a given semester subject to submission of the documents of publication of the respective paper.

B) Research Publications (Max. Credits: 06)

Sr. No	Type of the Publication	No. of Publications	Credits Allotted	Credits Earned
1	International Journal		2	
2	National Journal		1	
3	International Conference		1	
4	National Conference		0.5	

(iv) The additional credits for MOOC, Extracurricular Activity and Research Paper Publication will be given only after the authentic document is verified by the Head of the Department and a separate mark-sheet will be submitted by the Head of the Department along with the course examiner

(IV) Carry forward of the term

- (i) A candidate who is granted term for M. Tech. Semester-I, III, will be carry forward to M. Tech. Semester-II, IV examination, respectively even if he/she appears and fails or does not appear at M. Tech. Semester-I,III, examination respectively.
- (ii) A candidate shall be carry forward the M. Tech. Semester-III course if he/she has a backlog of any number of Heads of passing at M. Tech. Semester-I & II taken together.

(V) Certifications

(i) A student shall receive PG DEGREE after completion of two years PG programme of 80 credits.

(VI) Grade Point, Grade Letter and Equivalent Marks

The candidate must obtain a minimum Grade Point as per the University rules and regulations defined in CBCS 2014.

(VII) Span for completion of programme:

The candidate must clear all the examination heads within two years from the date of registration of programme. If he / she fails to complete the programme in stipulated time span then extension of 1+1 year will be provided to the candidate on his/her request for which he/ she has to apply for the same to the university office through proper channel.