AMOOR - III 2004 Course): SUMMER - 2016

Subject : Computer Oriented Decisions Models

Day: Tuesday
Date: 14/06/2016

S.D.E.

Time: 10.00 AM TO 1.00 PM Max Marks: 80 Total Pages: 2

N.B.:

- 1) Attempt **ANY FIVE** questions from Section I and attempt **ANY TWO** questions from Section II.
- 2) Answers to both the sections should be written in the **SAME** answer book.
- 3) Figures to the right indicate **FULL** marks.

SECTION - I

Q.1 Define Operations Research. Discuss its applications and limitations.

[10]

- Q.2 A manufacturer produces bicycles and tricycles each of which must be processed through two machines A and B. Machine A has maximum of 120 hours available and machine B has a maximum of 180 hours available. Manufacturing of tricycle requires 6 hours on machine A and 3 hours on machine B. Manufacturing a bicycle requires 4 hours on machine A and 10 hours on machine B. Profits are Rs. 445/- for a tricycle and Rs. 465/- for a bicycle. Formulate LPP and solve graphically.
- Q.3 A bakery keeps stock of popular brand of cake. Previous experience shows [10] the daily demand pattern for the item with associated probabilities, as given below:

Daily demand	0	10	20	30	40	50
Probability	0.01	0.20	0.15	0.50	0.12	0.02

Simulate the demand for next 10 days by using the following sequence of random numbers:

25, 39, 65, 76, 15, 05, 73, 89, 19, 49.

Also estimate the daily average demand for the cakes.

- Q.4 What is decision making process? Briefly describe decision making under [10] certainty and risk.
- Q.5 Solve the following assignment problem for minimization:

[10]

II III14 16 13 A19 17 11 19 BC14 17 15 11 D18 17

Q.6 Find initial basic feasible solution by Vogel's Approximation Method for the [10] following transportation problem:

	D_1	D_2	D_3	D_4	D_5	Availability
O_1	3	4	6	8	8	20
O_2	2	10	1	5	30	30
O_3	7	11	20	40	15	15
O_4	2	1	9	14	13	13
Demand	40	6	8	18	5	

P.T.O.

[15]

[15]

Q.7 Find the sequence that minimizes the total time required in performing the following jobs on three machines A, B and C. Processing time in hours are given in the following table:

	Job	1	2	3	4	5
	Machine A	8	10	6	7	11
	Machine B	5	6	2	3	4
-	Machine C	4	9	8	6	5

SECTION - II

Q.8 Solve the following LPP by simplex method:

$$Maximum z = 2x_1 - x_2 + x_3$$

Subject to
$$x_1 + x_2 - 3x_3 \le 8$$

$$-4x_1 + x_2 - x_3 \le 2$$

$$-2x_1 - 3x_2 + x_3 \le 4$$

$$x_1, x_2, x_3 \le 0$$

Q.9 Solve the following transportation problem by using MODI method:

	D_1	D_2	D_3	Supply
O_1	1	2	6	7
O_2	0	4	2	12
O_3	3	1	5	11
Demand	10	10	10	

Q.10 An established company has decided to add a new product to its line. It will buy the product from a manufacturing concern, package it, and sell it to a number of distributors selected on a geographical basis. The steps shown in the following table are to be planned.

Activity	Predecessors	Duration (days)	
A		6	
В	A	4	
С	В	7	
D	A	2	
Е	D	4	
F	Е	10	
G		2	
Н	G	10	
I	J, H	6	
J		13	
K	A	9	
L	C, K	3	
M	I, L	5	

- a) Draw network diagram.
- b) Indicate the critical path.

* * * *