B. Tech-Electronics & Telecommunication Engineering

STRUCTURE

Bharati Vidyapeeth (Deemed to be) University, Pune

Faculty of Engineering & Technology

					Pr	ogramme :l	B.Tech	(E &Tc)	<mark>Sem – I</mark> (2	2021 Cou	ırse)			
Sr. No.	Name of the course		Feachi eme (I Week	Hrs. /		Examinatior	n Schem	e (Marks)				Cı	redits	
		L	Р	Т	UE	IA	TW	TW& OR	TW& PR	Total	L	P TW/O R/PR	Т	Total
1	Linear Algebra and Calculus	03	00	01	60	40	00	00	00	100	03	00	01	04
2	Physics for Electronics Engineering	03	02	00	60	40	50	00	00	150	03	01	00	04
3	Electrical Technology	04	02	00	60	40	50	00	00	150	04	01	00	05
4	Elementary Electronics	04	02	00	60	40	00	50	00	150	04	01	00	05
5	'C' Programming	04	02	00	60	40	50	00	00	150	04	01	00	05
6	MATLAB Fundamentals	00	04	00	00	00	50	00	00	50	00	02	00	02
	Total	18	12	01	300	200	200	50	00	750	18	06	01	25

Bharati Vidyapeeth (Deemed to be) University, Pune. Faculty of Engineering & Technology

					F	rogramme	:B.Tech	n (E &	Гс) Sem	– II (202	l Course)			
Sr. No	Name of the course		Feachi ieme (Weel	Hrs. /	Е	xamination Se	cheme (M	larks)				Cre	edits	
		L	Р	Т	UE	IA	TW	TW &	TW&	Total	L	P TW/O	Т	Total
			-	-	CL		1	OR	PR	Total	2	R/PR	-	1000
7	Differential Equations and Complex Analysis	03	00	01	60	40	00	00	00	100	03	00	01	04
8	Chemistry of Electronic Materials	03	02	00	60	40	50	00	00	150	03	01	00	04
9	Digital Electronics	04	02	00	60	40	00	50	00	150	04	01	00	05
10	Semiconduct or Devices and Circuits-I	04	02	00	60	40	00	00	50	150	04	01	00	05
11	Python Programming	04	02	00	60	40	50	00	00	150	04	01	00	05
12	Computer Aided Drafting	00	04	00	00	00	50	00	00	50	00	02	00	02
	Total	18	12	01	300	200	150	50	50	750	18	06	01	25

Bharati Vidyapeeth (Deemed to be) University, Pune Faculty of Engineering & Technology

	Programme :B.Tech (E &Tc) Sem – III (2021 Course)													
Sr. No.	Name of the course		Feachin Ieme (H Week	Irs. /]	Examination Scl	heme (M	arks)				Cre	dits	
		L	Р	Т	UE	ΙΑ	TW	TW & OR	TW& PR	Total	L	P TW/O R/PR	Т	Total
13	Advanced Mathematics- for Electronics	03	00	01	60	40	00	00	00	100	03	00	01	04
14	Semiconductor Devices and Circuits-II	04	02	00	60	40	00	00	50	150	04	01	00	05
15	Signals and Linear Systems	04	02	00	60	40	25	00	00	125	04	01	00	05
16	Network Analysis and Synthesis	04	02	00	60	40	00	00	50	150	04	01	00	05
17	Database Management Systems*	03	02	00	60	40	25	00	00	125	03	01	00	04
18	EDA Tool Practices	00	02	00	00	00	50	00	00	50	00	01	00	01
19	PCB Design and Soldering	00	04	00	00	00	00	50	00	50	00	02	00	02
20	Vocational Course - I: Networking	00	00	00	00	00	00	50	00	50	00	02	00	02
21	MOOC-I	00	00	00	00	00	00	00	00	00	00	00	00	02
22	Environmental Studies** (Mandatory Audit Course)	00	00	00	00	00	00	00	00	00	00	00	00	00
	Total	18	14	01	300	200	100	100	100	800	18	09	01	30

*Industry taught course-I

**100 marks end semester exam

Bharati Vidyapeeth (Deemed to be) University, Pune

Faculty of Engineering & Technology

				P	rogramm	e :B.Te	ch (E d	&Tc) S	em – IV	<mark>/ (2021 C</mark>	ourse)			
Sr. No.	Name of the course		Teachir Ieme H Week	[rs. /	Exa	mination	Schem	e (Mark	s)	Total Marks		Cred	lits	
		L	Р	Т	UE	IA	TW	TW& OR	TW& PR	Total	L	P TW/OR/ PR	Т	Total
23	Control Systems and Application	04	02	00	60	40	25	00	00	125	04	01	00	05
24	Integrated Circuits and Applications	04	02	00	60	40	00	00	50	150	04	01	00	05
25	Electromagnetics and Transmission Lines	03	00	01	60	40	00	00	00	100	03	00	01	04
26	Analog Communication	04	02	00	60	40	00	50	00	150	04	01	00	05
27	Data Science*	03	02	00	60	40	25	00	00	125	03	01	00	04
28	Advanced Computer Programming	00	04	00	00	00	00	50	00	50	00	02	00	02
29	Sensor Modelling and Simulation Laboratory	00	02	00	00	00	00	50	00	50	00	01	00	01
30	Vocational Course-II Calibration and repair of lab equipments	00	00	00	00	00	00	50	00	50	00	02	00	02
31	Social Activities-I	00	00	00	00	00	00	00	00	00	00	00	00	02
32	Disaster Management** (Mandatory Audit Course)	00	00	00	00	00	00	00	00	00	00	00	00	00
	Total	18	14	01	300	200	50	200	50	800	18	09	01	30

*Industry taught course-II

**100 marks end semester exam

Bharati Vidyapeeth (Deemed to be) University, Pune.

Faculty of Engineering & Technology

	Programme :B.Tech (E &Tc) Sem – V (2021 Course)													
Sr. No.	Name of the course		ning Sc [.] s. / We		Ex	amination Sch	eme (M	larks)		Total Marks		Cr	edits	
		L	Р	Т	UE	IA	TW	TW & OR	TW & PR	Total	L	P TW/OR/ PR	Т	Total
33	Embedded systems	03	02	00	60	40	00	50	00	150	03	01	00	04
34	Digital Communication System	03	02	00	60	40	25	00	00	125	03	01	00	04
35	Power Electronics	03	02	00	60	40	25	00	00	125	03	01	00	04
36	Microwave and Antenna	04	02	00	60	40	00	50	00	150	04	01	00	05
37	Data Communication and Networking *	03	00	00	60	40	00	00	00	100	03	00	00	03
38	Microcontroller Programming	00	04	00	00	00	00	00	50	50	00	02	00	02
39	Project-I Stage –I	00	02	00	00	00	00	100	00	100	00	04	00	04
40	Vocational course III: PLC	00	00	00	00	00	00	50	00	50	00	02	00	02
41	MOOC- II	00	00	00	00	00	00	00	00	00	00	00	00	02
	Total	16	14	00	300	200	50	250	50	850	16	12	00	30

*Industry taught course-III

Bharati Vidyapeeth (Deemed to be) University, Pune

Faculty of Engineering & Technology

		Programme :B.Tech (E &Tc) Sem – VI (2021 Course) Teaching Scheme												
Sr. No.	Name of the course		ing Sch s. / Wee		Exa	amination Scho	eme (Ma	urks)		Total Marks		Cre	dits	
		L	Р	Т	UE	ΙΑ	TW	TW & OR	TW & PR	Total	L	P TW/O R/PR	Т	Total
42	Photonics	04	02	00	60	40	25	00	00	125	04	01	00	05
43	Quantitative techniques, Communication and Values	02	02	00	60	40	00	00	00	100	03	00	00	03
44	Digital Signal Processing	03	02	00	60	40	25	00	00	125	03	01	00	04
45	CMOS Design	04	02	00	60	40	00	50	00	150	04	01	00	05
46	Internet of Things*	03	00	00	60	40	00	00	00	100	03	00	00	03
47	VHDL	00	02	00	00	00	00	00	50	50	00	01	00	01
48	Project-I Stage-II	00	02	00	00	00	00	100	00	100	00	04	00	04
49	*Vocational 4: Web App development	00	00	00	00	00	00	50	00	50	00	02	00	02
50	*** Internship	00	00	00	00	00	00	50	00	50	00	03	00	03
	Total	16	12	00	300	200	50	250	50	850	17	13	00	30

*Industry taught course-IV

Bharati Vidyapeeth (Deemed to be) University, Pune

Faculty of Engineering & Technology

	Programme :B.Tech (E &Tc) Sem – VII (2021 Course)													
Sr. No.	Name of the course	Teachi	ng Schei / Week			Examination S	cheme (M	(arks)		Total Marks		Cred	its	
		_						TW&	TW		_	Р	_	
		L	Р	Т	UE	IA	TW	OR	& PR	Total	L	TW/OR/P R	T	Total
51	Soft Computing	04	02	00	60	40	00	00	50	150	04	01	00	05
52	Radio Frequency Engineering	04	00	01	60	40	00	00	00	100	04	00	01	05
53	Elective- I	04	02	00	60	40	00	50	00	150	04	01	00	05
54	Industrial Wireless Sensor Network*	04	02	00	60	40	00	50	00	150	04	01	00	05
55	Project II Stage I	00	04	00	00	00	00	200	00	200	00	04	00	04
56	Electronic Product Design	00	04	00	00	00	00	100	00	100	00	02	00	02
57	Research paper publication	00	00	00	00	00	00	00	00	00	00	00	00	02
58	MOOC-III	00	00	00	00	00	00	00	00	00	00	00	00	02
	Total	16	14	01	240	160	00	400	50	850	16	09	01	30

Elective-I

1) Telecom Network Management

2) Advanced Embedded System Design

3) Image processing

*Industry taught course-V

Bharati Vidyapeeth (Deemed to be) University, Pune Faculty of Engineering & Technology

			•	Progr	amme:B.T	Гесh (Е &	Tc) Sem	– VIII	(2021	Course)				
Sr. No.	Name of the course	Sch	eachir eme H Week	[rs. /	Ex	xamination S	Scheme (M	larks)		Total Marks		Cred	lits	
		L	Р	Т	UE	IA	TW	TW & OR	TW & PR	Total	L	P TW/OR/P R	Т	Total
59	Mobile Communication	04	02	00	60	40	00	50	00	150	04	01	00	05
60	Satellite Communication & Radar	04	02	00	60	40	00	00	50	150	04	01	00	05
61	Elective II	04	02	00	60	40	00	50	00	150	04	01	00	05
62	Cyber security*	04	00	01	60	40	00	00	00	100	04	00	01	05
63	Cloud Computing	00	04	00	00	00	00	100	00	100	00	02	00	02
64	Project -II Stage-II	00	04	00	00	00	00	200	00	200	00	06	00	06
65	Social Activities-II	00	00	00	00	00	00	00	00	00	00	00	00	02
	Total	16	14	01	240	160	00	400	50	850	16	11	01	30

Elective-II

1) Software Defined Radio

2) Automotive Electronics

3) Computer Vision

*Industry taught course-VI

SEMESTER:- I SYLLABUS

		B. 7	Tech. Sem. I: Electronics & Telecor	6 6							
			SUBJECT: - LINEAR ALGEBR	A and CALCULUS							
TEACH	HING SC	CHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:							
Theory:	03		End Semester Examination: 60 Marks	Credits: 03							
Practica											
Tutorial	l: 01			Credits: 01							
	Total Credit: 04										
				·							
Course	Pre-req	uisites: Class X	XII Mathematics								
Course	ourse Objectives:										
1.	To teach the differential calculus.										
2.		To teach linea	r algebra and linear transformation.								
3.		To introduce of	ordinary differential equations.								
Course	Outcom	es: After lea	rning this course students will be able to								
1	Evaluat	e the matrices a	and its application to the system of linear eq	uations.							
2	2 Evaluate vector spaces and linear transformation										
3	Solve n	umerical proble	ems involving differential calculus.								
4	Comput	te maxima, min	ima, and multiple integrals.								
5	Evaluate the theorems in integral Calculus.										

6 Use t	he methods of first order and first-degree differential equation.	
UNIT – I	Linear algebra: Matrices	(06 Hours)
	Algebra of Matrices, System of Linear Equations, Linear Dependence and Independence, rank,	
	row operations and Gauss elimination, Applications to systems of linear equations, Cayley -	
	Hamilton Theorem	
UNIT – II	Vector space and Linear Transformations	(06 Hours)
	Vector spaces, subspaces, Eigen values and Eigen Vectors and their basic properties, Linear and	
	Orthogonal Transformations, rank -nullity theorem, Existence and Uniqueness Theorem for	
	Linear Systems, product spaces, Gram-Schmidt process, Diagonalization	
UNIT - III	Differential Calculus	(06 Hours)
	Limits of sequences and functions, continuity, uniform continuity and differentiability, Mean	
	value theorems, L' Hospital's Rule. Euler's Theorem on Homogeneous Functions. Taylor's	
	theorem with proof, Partial derivatives, Chain rule.	
UNIT -IV	Maxima and Minima for several	(06 Hours)
	Maxima, minima, saddle points. gradient, directional derivatives, Lagrange multipliers, Exact	
	differentials, Errors, and approximations. Repeated and multiple integrals applications to volume,	
	surface area, moments of inertia, etc.	

UNIT -V	Integral Calculus	(06 Hours)						
	Riemann integral and the fundamental theorem of integral calculus, Rolle's theorem, Applications							
	to length, area, volume, surface area of revolution. Moments, centers of mass and gravity.							
UNIT -VI	Ordinary differential equation	(06 Hours)						
	Ordinary differential equations of the 1st order, exactness and integrating factors, applications of							
	first order and first-degree differential equation in orthogonal trajectories and electrical circuits.							
	Picard's iteration method.							
Topics for pr	ojets based learning*							
1. Cramer's ru								
2. System of li	near equations solution							
3. Rank of ma								
4. Gauss elimi								
	osition method							
6. Dimension								
	idt Orthogonalization							
8. rank -nullity								
	orem on Homogeneous Functions							
10. Maxima and minima for two variable function								
11. Eigen values and Eigen vectors 12. Multiple integrals applications								
	of differential equation							
	erential equation							
	15. Kirchhoff's voltage law *Students in a group of 3 to 4 shall complete any one project from the above list							
*Students in a g	group of 3 to 4 shall complete any one project from the above list							

Textbooks/Reference Books

1.'Advanced Engineering Mathematics' by Erwin reyszig

2.'Advanced Engineering Mathematics' by Dennis G. Zill and Warren S. Wright

3. Applied Mathematics (Volumes I and II) by P.N. Wartikar & J.N. Wartikar

4.HigherEngineeringMathematicsbyB.S.Grewal

5.HigherEngineeringMathematicsbyB.V.Ramana

6.AdvancedEngineeringMathematics

	В	. Tech. Sem. I: Electronics & Telecom	munication Engineering								
		SUBJECT: - PHYSICS FOR ELECTR									
TEACH	HING SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:								
Theory:	03	End Semester Examination: 60 Marks	Credits: 03								
Practica		Internal Assessment: 40 Marks									
Tutorial	1:00	TW: 50 Marks	Credit: 01								
			Total Credit: 04								
Course	Pre-requisites:										
	Basic Physic	es and Calculus.									
Course	rse Objectives:										
	-	nowledge of basic concepts in physics relevation for the Electronics and Telecommu	ant to engineering applications in a broader sense with a nication.								
	Outcomes:	udents will be able to									
	ter learning this course students will be able to										
1	Demonstrate the kno	wledge of properties of charged particles and t	heir use in modern instruments								
2	Solve the quantum pl	nysics problemsat micro level phenomena.									
3	Explain mechanical	properties of solid matter and connect to applic	cations in the field of engineering.								
4	4 Demonstrate the working of PN junctions in semiconductor devices under various conditions.										

Demo	emonstrate the wave nature of light and apply it to measure stress, pressure and dimension.				
Analy	Analyze the problems associated with architectural acoustics and give their remedies.				
INIT – I Modern Physics					
	Motion of a charged particle in electric and magnetic fields, Electrostatic and Magnetostatic				
	focusing, Electron microscope, Wavelength and resolution, Specimen limitation, Depth of field				
	and focus, TEM, SEM and EDS, Separation of isotopes by Bainbridge mass spectrograph, CRT.				
- II	I Quantum mechanics				
	Dual nature of matter, concept of wave packet, group and phase velocity and relation between	(06 Hours)			
	Well and the Potential Barrier.				
· III	Solid state Electronics-I	(06 Hours)			
	Superconductors, properties, Meissner effect, Type I and Type II superconductors, BCS theory of				
	superconductivity (Qualitative) - High Tc superconductors - Applications of superconductors -				
	SQUID, cryotron, magnetic levitation.				
	Formation of Energy Bands, E-k Diagram, Origin of band gap, Energy bands in solids, Effective				
	mass of electron, Fermi-Dirac Distribution, Conductivity in conductor and semi-conductors.				
	Analy - I - II	Motion of a charged particle in electric and magnetic fields, Electrostatic and Magnetostatic focusing, Electron microscope, Wavelength and resolution, Specimen limitation, Depth of field and focus, TEM, SEM and EDS, Separation of isotopes by Bainbridge mass spectrograph, CRT. II Quantum mechanics Dual nature of matter, concept of wave packet, group and phase velocity and relation between them, Physical significance of wave function, Schrodinger's time dependent and time independent wave equation, Application of Schrodinger's time independent wave equation to the problems of Particle in a rigid box, Applications of Schrodinger's Equation: Infinite Potential Well and the Potential Barrier. III Solid state Electronics-I Superconductors, properties, Meissner effect, Type I and Type II superconductors, BCS theory of superconductivity (Qualitative) - High Tc superconductors – Applications of superconductors – SQUID, cryotron, magnetic levitation. Formation of Energy Bands, E-k Diagram, Origin of band gap, Energy bands in solids, Effective			

UNIT -IV	Solid State Electronics-II	(06 Hours)
	Review of intrinsic and Extrinsic semiconductors, The no and po equations, Drift and Diffusion	(00 110013)
	Currents, Regeneration process, Recombination Process, Derivation of Current Continuity	
	Equation, Position of Fermi level in intrinsic semi-conductors (with derivation) and in extrinsic	
	semi-conductors, Minority Carrier injection and recombination in Homogeneous Semiconductor,	
	p-n junction formation, Band structure of p-n junction diode under forward and reverse biasing,	
	Junction Capacitance, Photovoltaic effect, Solar cell and its characteristics.	
UNIT -V	Interference, Diffraction and Polarization	(06 Hours)
	Interference: Interference due to thin film of uniform thickness, engineering applications of	
	interference (optical flatness, non-reflecting coatings).	
	Diffraction: Diffraction at a single slit (Geometrical method), Conditions for maximum and	
	minimum, Diffraction at a circular aperture (Result only), Plane diffraction grating, Conditions	
	for principal maxima and minima.	
	Polarization: Introduction, Double refraction and Huygen's theory, Positive and negative	
	crystals, Nicol prism	
UNIT -VI	Acoustics	(06 Hours)
	Elementary Acoustics, reverberation and reverberation time, Sabine's formula, pressure and	
	intensity level, different types of noise and their remedies, Electro Acoustic transducers	

(piezoelectric transducers, electrostatic transducer, magnetic transducer, magneto strictive transducer), Types of Microphones, Loudspeaker, stereophony, sound recording and Sound reinforcement systems.

Lab Experiment :(Any Eight of the Following)

- 1. Study of Lissajous figure by Cathode Ray Oscilloscope (CRO)
- 2. Determination of e/m by Thomson method.
- 3. Plotting the hysteresis loop for given magnetic material.
- 4. To study Hall effect and determine the Hall voltage.
- 5. Calculation of conductivity by four probe methods.
- 6. Study of solar cell characteristics and calculation of fill factor.
- 7. Determination of band gap of semiconductor.
- 8. Determination of radius of Plano convex lens/wavelength of light/Flatness testing by Newton's rings
- 9. Determination of wavelength of light using diffraction grating.
- 10. Determination of resolving power of telescope.
- 11. Determination of thickness of a thin wire by air wedge.
- 12. Determination of refractive index for O-ray and E-ray.
- 13. To determine the velocity of sound.
- 14. Measurement of average SPL across spherical wavefront and behavior with the distance.
- 15. Expansion chamber muffler: investigation of muffler response as a filter in the low frequency approximation by determining insertion loss.
- 16. Interference of sound using PC speakers.

Assignments

Six assignments to be given by the subject teacher (Theory)-one from each unit/one mini project with report-students can work in group of 4 Maximum

Topics for projets based learning*

1. Design and simulation of automatic solar powered time regulated water pumping

2. Solar technology: an alternative source of energy for national development

3. Comparison of various method used in measuring the gravitational constant g

4. Possible effects of electromagnetic fields (emf) on human health

5. The design and construction of the hearing aid device

6. Design and construction of digital distance measuring instrument

7. Design and construction of automatic bell ringer

8. Design and construction of sound or clap activated alarm

9. Electronic eye (Laser Security) as autoswitch/security system

10. Electric power generation by road power

11. Wireless power transfer

12. Determination of velocity of O-ray and E-ray in different double refracting materials

13. Quantum confinement effect in wide band semiconductors

14. Tesla Coil

15. LiFi- wireless data transfer system using light

*Students in a group of 3 to 4 shall complete any one project from the above list

Text Books:

1. A Textbook of Engineering Physics, <u>M N Avadhanulu</u>, <u>P G Kshirsagar</u> and <u>TVS Arun Murthy</u>, S. Chand Publishing (2018).

2. Engineering Physics, R K Gaur and S L Gupta, Dhanpat Rai Publishing Co Pvt Ltd (2015)

3. Concepts of Modern Physics, Arthur Beiser, Shobhit Mahajan and S. Rai Choudhury, McGraw Hill Education (2017)

Reference Books:

1. Fundamentals of Physics, Jearl Walker, David Halliday and Robert Resnick, John Wiley and Sons (2013)

2. Optics, <u>Francis Jenkins</u> and <u>Harvey White</u>, Tata Mcgraw Hill (2017)

3. Principles of Physics, John W. Jewett, Cengage publishing (2013)

4. Introduction to Solid State Physics, C. Kittel, Wiley and Sons (2004)

5. Principles of Solid-State Physics, H. V. Keer, New Age International (1993)

6. Laser and Non-Linear Optics, B. B. Laud, New Age International Private Limited (2011)

7. Nanotechnology: Principles and Practices, Dr. S. K. Kulkarni, Capital Publishing Company (2014)

8. Science of Engineering Materials- C.M. Srivastava and C. Srinivasan, New Age International Pvt. Ltd. (1997)

9. Introduction to Electrodynamics –David R. Griffiths, Pearson (2013)

10. Renewable Energy: Power for a Sustainable Future, <u>Boyle</u>, Oxford University Press (2012)

		B. Tech. Sem. I: Electronics & Telecom SUBJECT: - ELECTRICAL T	8 8
TEAC	CHING SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:
Theory	y: 04	End Semester Examination: 60 Marks	Credits :04
Practic	cal: 02	Internal Assessment: 40 Marks	
Tutoria	al: 00	TW: 50 Marks	Credit: 01
			Total Credits: 5
Cours	e Pre-requisites:		
	Physics an	1 Mathematics	
Cours 1. 2.	To impart		and theorems associated with electrical systems.
3.		knowledge about fundamental parameters such and DC circuits	n as resistance, inductance and capacitance and magnetic
4.	To provide	knowledge of Electrical Measurement technique	e and Electrical Safety Practices.
Cours	e Outcomes: After	learning this course students will be able to	
1		it parameters using dc network theorems.	
2	Demonstrate the knowledge of various parameters related to magnetic circuit and single-phase ac circuits.		tic circuit and single-phase ac circuits.
3	B Classify the various parameters of 3-phase AC circuits and apply the concepts of single-phase transformer.		e concepts of single-phase transformer.

4	Demonstrate the knowledge of various power generation and transmission techniques.				
5	Explain the Construction and working principle of DC and AC machines.				
6	Apply the various measurement techniques of circuit parameters and safety norms.				
UNIT –	- I	DC Circuit Analysis and Network Theorems:	(08 Hours)		
		Circuit Concepts: Concepts of network, Active and passive elements, voltage and current sources, concept of linearity and linear network, unilateral and bilateral elements, R, L and C as linear elements, source transformation. Kirchhoff's laws; loop and nodal methods of analysis; star-delta transformation; Network Theorems: Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Maximum Power Transfer Theorem (simple numerical problems).			
UNIT –	- II	Magnetic Circuit and Single-Phase AC Circuits	(08 Hours)		
		 Magnetic Circuit: Magnetic circuit concepts, analogy between electric & magnetic circuits, magnetic circuits with DC and AC excitations, magnetic leakage, B-H curve, hysteresis and eddy current losses, magnetic circuit calculations, mutual coupling Single Phase AC Circuits: AC Fundamentals: Sinusoidal, square and triangular waveforms – average and effective values, form and peak factors, concept of phasors, phasor representation of sinusoidally varying voltage and current. Analysis of series, parallel and series parallel RLC Circuits: apparent, active & reactive powers, power factor, causes and problems of low power factor, power factor improvement; resonance in series and parallel circuits, quality factor (simple numerical problems 			
UNIT -	III	Three Phase AC Circuits:	(08 Hours)		
		Three Phase AC Circuits: Three phase system-its necessity and advantages, meaning of phase sequence, star and delta connections, balanced supply and balanced load, line, and phase voltage/current relations (Simple derivations), three-phase power and its measurement (simple numerical problems).			
		Single Phase Transformer: Principle of operation, construction, e.m. f. equation, equivalent			

	circuit, power losses, efficiency (simple numerical problems), introduction to auto transformer. Three phase transformer and its different winding connections	
UNIT -IV	Power Generation and Power System	(08 Hours)
	 Power Generation: Power Generation techniques using conventional (Hydro, Thermal, nuclear, Gas) & non-conventional resources (Solar, Wind, biogas). Introduction to Power System: General layout of electrical power system and functions of its 	
	elements, standard transmission, and distribution voltages, layout. Concept of grid (elementary treatment only)	
	DC Machines and AC Machines	(08 Hours)
	DC Machines: Principles of electromechanical energy conversion, DC machines: types, Construction & working, e. m. f. equation of generator and torque equation of motor, speed control, characteristics and applications of dc motors (simple numerical problems).	
	AC Machines: Single Phase Induction motor: Principle of operation and introduction to methods of starting, applications. Three Phase Induction Motor: Principle of operation, slip-torque characteristics, applications (numerical problems related to slip only	
UNIT -VI	Electrical Measurement technique	(08 Hours)
	Electrical Measurement technique: Electrical instruments such as wattmeter, energy meter, tong-tester, megger, and power analyzer. Measurement of circuit parameters like resistance, inductance and capacitance using DC and AC bridges.	
	Electrical Safety Practises: Electric shock, precautions against shock, First aid for electric shock other hazards of electrical laboratories & safety rules, Objectives of Earthing, types of earthing;	

Term Work:
1. Find the current in the given network using Super position Theorem
2. Find the current in the given network using Thevenin's and Notton's Theorem
3. To Plot the B-H characteristics for a magnetic material
4. To find the voltage and current relationships in R-L series, R-C series, R-L-C series circuit
5. To find the voltage and current relationships in R-L-C series resonance circuit.
6. Verification of voltage and current relationships in star and delta connected 3-phase networks
7. To find efficiency and regulation of single-phase transformer
8. To control the speed of DC shunt motor using fulx control and armature voltage control method.
9. To control the speed of DC shunt motor using fulx control and armature voltage control method.
10. Find the unknown resistance using Kelvin's double bridge.
11. Find the unknown inductance using Anderson's bridge.
12. Measurement of power and energy in single phase ac circuit.
Note: The term work shall be the record of minimum eight experiments performed from the above list.
Topics for projets based learning* 1.Design a small circuit for superposition theorem.
2. Design small circuit to study Thevenin's Theorem.
3. Design Small circuit to study Norton's Theorem.
4. Design small circuit to study R-C series circuit.
5. Design small circuit to study R-L series circuit.
6. Design small circuit to study R-L-C series circuit.
7. Design of Tesla Coil.
8. Design small two winding transformer.
9. Design small electromagnet.10. Design a small doorbell.

pipe and plate earthing, Residual current circuit breaker (RCCB).

11. Design of wireless power transmission.

12. Design of electric buzzer.

13. Design of small wind farm.

14. Design of small solar power plant.

15. Design of small galvanometer.

*Students in a group of 3 to 4 shall complete any one project from the above list

Text-books:

1. Electrical Technology - Edward Huges (Pearson

1. Basic Electrical Engineering - D. P. Kothari, J Nagarath (TMC)

2. Electrical power system technology - S. W. Fordo, D. R. Patric (Prentice Hall)

Reference Books:

1. Principles of Electronics-Dr. H. M. Rai (Satya Prakashan)

2. Electronic Devices and Circuit Theory- R. L. Boylestad and L. Nashelsky (PHI)

3. Electrical, Electronics Measurements and Instruments - (SatyaPrakashan)

4. Principles of Communication Engineering - Anokh Singh, A. K. Chhabra (S Chand)

5. Electrical Technology - Volume I & volume – II by B L Theraja and AK Theraja(S Chand)

	В	. Tech. Sem. I: Electronics & Telecon SUBJECT: - ELEMENTRY B	8 8	
TEACHI	NG SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:	
Theory: 04	4	End Semester Examination: 60 Marks	Credits: 04	
Practical:		Internal Assessment: 40 Marks		
Tutorial: 0	00	TW & OR: 50 Marks	Credit: 01	
			Total Credit: 05	
Course Pr	re-requisites:			
	Physics, Ch	emistry, Mathematics (Class XII)		
Course O	bjectives:			
1.		To teach the construction, working, ratings and application of passive devices like resistors, capacitors, inductor transformers, and relays		
2.	To introduc	To introduce types of Voltage and current sources		
3.		To teach the construction, working and ratings of devices like PNjunction diode, Schottky diode, Zener diode bipolar junction transistor		
4.	To teach the	To teach the construction, working and ratings of field effect transistor and MOSFET		
5.		To teach the construction, working and ratings of optoelectronic devices like LDR, LED, phototransistor, and photovoltaic cell		
6.	To introduce the concept of grounding and shielding, PCB layout design, PCB fabrication process, with the aid of a EDA tool.			

Cours	e Outcon	nes: After learning this course students will be able to	
1		y resistors, capacitors, inductors, and transformer based on their construction, types and ratings and analyze sir ing of passive devices	nple circuits
2	Analyz	e circuits using voltage and current sources	
3	Classify	yactive devices based on their types and ratings and plot their characteristic curves	
4	Classify	yoptoelectronic devices based on their types and ratings and plot their characteristic curves.	
5	Use the	concepts of grounding and shielding while designing PCB, explain the PCB design and fabrication and assem	bly process
6	Use ED	OA tools for designing single sided PCB for simple circuits	
UNIT	– I	Passive Electronic Components	(08 Hours)
		Introduction to the concept of active and passive electronic devices, Types of resistors, construction, ratings and typical applications, Types of capacitors, construction, ratings and typical applications, Types of inductors, construction, ratings and typical applications, Types of transformers, construction, ratings and typical applications, Construction of relays, types and ratings, Analysis of series and parallel resistors and capacitor circuits	
UNIT	– II	Sources	(08 Hours)
		Types of voltage and current sources (AC and DC), Concept of ideal and non-ideal voltage source, Concept of ideal and non-ideal current source, Series and parallel combinations of sources, Loading effect, Dependent voltage and current sources, Electrochemical cells and batteries, Types and characteristics, Regulation concept (Line regulation, load regulation, temperature stability factor)	

UNIT - III	Diodes and BJT	(08 Hours)
	Classification of material based on band gap theory, Types of semiconductors (p-type and n- type), PN junction diode and its characteristics, Schottky diode, Zener diode, Diode models, Concept of DC and AC load line and ratings of PN junction diode, Introduction to BJT (NPN and PNP) and its construction and working mechanism, BJT configurations and their input and output characteristics, Types and ratings of BJT	
UNIT -IV	FET and MOSFET	(08 Hours)
	Construction and working mechanism of FET, Input and output characteristics of FET, FET configurations, Ratings of FET, Construction and working of DMOSFET and EMOSFET, Characteristics of DMOSFET and EMOSFET, Configurations and ratings of EMOSFET	
UNIT -V	Opto-Electronics	(08 Hours)
	Construction and working of LDR and its characteristics, simple application, Construction and working of LED and its characteristics and ratings, Photo-transistor and its characteristics, Introduction to the concept of electrical isolation and its importance, Construction of opto-isolator(opto-coupler) and its ratings, Construction and working of photovoltaic cell and its characteristics and ratings	
	DCP (Drinted Circuit Decard)	(09 Hours)
UNIT -VI	PCB (Printed Circuit Board)	(08 Hours)
	Concept of grounding, shielding and its importance, building blocks of PCB (track, pads, fills) and design rules, PCB fabrication and assembly, Introduction to EDA tool for artwork design of a simple single sided PCB Soldering: Types of solder alloys, soldering equipment, specifications of solder alloys	
List of experir	· ·	

- 1. Study of resistors, capacitors, and inductors
- 2. Plot V-I Characteristics of PN Junction Diode
- 3. Plot V-I Characteristics of Zener Diode
- 4. Plot Input and Output Characteristics of BJT in CE Configuration
- 5. Plot Transfer and output characteristics of FET
- 6. Plot Transfer and output characteristics of EMOSFET
- 7. Plot characteristics of LDR
- 8. Plot characteristics of Opto-isolator
- 9. Study of Relays

Topics for projets based learning*

1. Survey report of types of resistors, capacitors, transformers their form factors, specifications and price

2.Survey report of types of batteries, their form factors, specifications and price

3.Survey report of types of low power relays, their form factors, specifications and price

4.Survey report of types of diodes, BJT, MOSFET, their form factors, specifications and price

5.Build a shunt regulator and measure its line and load regulation

6.Build a full-wave rectifier with capacitor input filter and test it

7.Build a small signal voltage amplifier (BJT) and test it

8.Build a switch using BJT, MOSFET, relay and test it

9.Build a simple day light switch with an LDR, BJT and Relay

10.Build a motion sensor switch

11.Build a fire alarm circuit

12.Implement and test a given circuit on a general purpose PCB

13.Build a simple water level indicator

14.Build a simple temperature indicator

15.Build a LED Light Bulb Circuit

*Students in a group of 3 to 4 shall complete any one project from the above list

Text Books/ Reference Books:

1. Passive Components for Circuit Design, Ian Sinclair,1st Edition 2000, ISBN: 9780750649339, Newnes

2Grob's Basic Electronics, Mitchel Schultz, 11th Edition, 2010, ISBN-13: 978-0-07-351085-9, McGraw Hill

3. Fundamentals of Electronic Devices and Circuits, David A. Bell, 5th Edition, 2008, Oxford University Press,

4Microelectronics Circuits, Adel S. Sedra& Kenneth C. Smith,7th Edition, 2015,Oxford University Press

5.Linden's Handbook of Batteries, Thomas Reddy,4th Editiion,2010, ISBN: 978-0-07-162419-0, McGraw Hill

6.Printed circuit boards: design, fabrication, assembly and testing, Raghbir Singh Khandpur,2006, ISBN 10:0071464204, McGraw Hill

7. The Circuit Designer's Companion, Peter Wilson, 4th Edition, 2017, ISBN: 978-0-08-101764-7, Newnes

			B. Tech. Sem. I: Electronics & Teleco	mmunication Engineering	
			SUBJECT: - C PROGE	RAMMING	
TEACI	HING SC	CHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:	
Theory:	: 04		End Semester Examination: 60 Marks	Credits: 04	
Practica	al: 02		Internal Assessment: 40 Marks		
Tutoria	1: 00		TW: 50 Marks	Credit: 01	
				Total Credit: 5	
Course	Pre-requ	uisites:	·		
		Flow charts			
~					
Course	Objectiv	1			
		• A stud	ent will gain a thorough understanding of	the fundamentals of C programming.	
		 A stud 	ent will be able to code, compile, and test	C programs.	
		A Stuc	lent will be able to solve Problems using G	Clanguage.	
Course	Outcom	es: After lea	rning this course students will be able to	0	
1	Apply th	e basic concepts	of programming using C language.		
2	Write ba	sic programs usi	ng conditional statement.		
3	Use 2 D	Array in progra	mming		
4	Create f	unctions and Pas	ss parameters.		
5	Construc	ct structures usin	g Pointers.		
6	Apply ba	asic concepts of	graphics using C language.		
UNIT -	- I	Introduction	Basic of C		(08 Hours)

	Structure of a C program, identifiers, basic data types and sizes. Constants, variables, arithmetic, relational	
	and logical operators Managing input and output operations, Sample programs.	
UNIT – II	Conditional Statements and Loops	(07 Hours)
	Decision making within a program, conditions, if statement, if-else statement, loops: while loop, do while,	
	for loop. Nested loops, infinite loops, switch statement, sample programs	
UNIT - III	Arrays & Strings	
	Arrays - concepts, declaration, definition, accessing elements, storing elements, Strings and string	(08 Hours)
	manipulations, 1-D arrays, 2-D arrays and character arrays, string manipulations, , Array applications:	
	Matrix Operations.	
UNIT -IV	Functions & Pointers	(07 Hours)
	Basics, parameter passing, storage classes- extern, auto, register, static, scope rules, user defined	
	functions, , recursive functions, Recursive solutions for Fibonacci series, example c programs.	
	Passing arrays & strings to functions.	
UNIT -V	Pointers and Structures	(10 Hours)
	Derived types- structures- declaration, definition, and initialization of structures, accessing structures,	
	nested structures, arrays of structures, structures and functions, pointers to structures, self-referential	
	structures, bit-fields, program applications. Different types of stacks and queues.	

Basic of Graphics	(08 Hours)
Introduction, what is computer Graphics? Area of Computer Graphics. Graphics programming, initializing	
the graphics, C Graphical functions, simple programs	
ments:	
• Write a C program to take user Input and print it on the screen.	
• Write a C program to perform addition or subtraction of two numbers.	
• Write a C program to find whether the number is Odd or Even.	
• Write a C program to find out Prime numbers.	
 Write a C program to find out Fibonacci series. 	
 Write C programs to print different patterns. 	
 Write a C program to do factorial using recursion. 	
• Write a C program to find out Armstrong number	
• Write a C program to sort the array in Ascending & Descending order.	
 Write C programs to perform operations on 2-D arrays. 	
• Write a C program to perform different operations on strings.	
	Introduction, what is computer Graphics? Area of Computer Graphics. Graphics programming, initializing the graphics, C Graphical functions, simple programs ments: Write a C program to take user Input and print it on the screen. Write a C program to perform addition or subtraction of two numbers. Write a C program to find whether the number is Odd or Even. Write a C program to find out Prime numbers. Write a C program to find out Fibonacci series. Write a C program to do factorial using recursion. Write a C program to find out Armstrong number Write a C program to find out Armstrong number Write a C program to sort the array in Ascending & Descending order. Write C programs to perform operations on 2-D arrays.

_						
5.	Write a C program to show the use of pointers in arrays.					
6.	Write a C program to use functions using pointers.					
7.	Write a C program to create student mark sheet using structures.					
8.	Write a C program to show the use of structure using pointers.					
9.	Write a program showing functions of Graphics programming					
10.	Mini Project.					
	· · · · · · · · · · · · · · · · · · ·					
Topics for pr	ojets based learning*					
1.Employee R	1.Employee Record System Project					
2. Build Calculator (GUI Optional)						
3. Customer B	Silling System Project:					
4. Medical Sto	ore Management System Project					
5. Currency C	onverter (GUI Optional)					
	riodic Table (GUI Optional)					
	stem Conversion Project					
	z / Contact Management System					
9. 100 Years (
L	Ianagement System Project					
	11. Customer Billing system					
12. Tic Tac Toe Game (GUI Optional)						
13. Departmental Store Management.						
14. Build Rock, Paper & Scissors Game (GUI Optional)						
15. Bank Management System						
*Students in a g	*Students in a group of 3 to 4 shall complete any one project from the above list					
Text Books:						
1. Programming in ANSI C – E Balagurusamy (5 th Edition-TMH)						

2.	C Graphics &	Projects – B	y B M Havaldar
----	--------------	--------------	----------------

Reference Books:

- 1. Let Us C- Yashwant Kanitkar
- 2. Computer Graphics By Hearn & Baker
- 3. The C Programming Language. 2nd Edition By Brian Kernighan and Dennis Ritchie

B. Tech. Sem. I: Electronics & Telecommunication Engineering							
SUBJECT: -MATLAB FUNDAMENTALS							
TEACHING SCHEME:		EXAMINATION SCHEME:	CREDITS ALLOTTED:				
Theory: 00		End Semester Examination: 00	Credits: 00				
Practical: 04		Internal Assessment: 00					
Tutorial: 00		TW: 50 Marks	Credit: 02				
			Total Credit: 02				
Course Pre-requisites:							
	Mathematics (Class XII) and Linear Algebra and Calculus						
Course Objectives:							
1.	To teach basics of MATLAB software and programming.						
2.	To teach the stude	To teach the students Vectors, Arrays and Strings in programming					
3.	To introduce Con	To introduce Conditional Statements, Loops and Functions					
4.	To teach the students to perform different operations on Matrices in programming.						
5.	To introduce MA	To introduce MATLAB Simulink.					
6.	To introduce MATLAB GUI.						
Course Outcomes: After learning this course students will be able to							
1	1 Use MATLAB for basic programming.						

2	Use Vectors, Arrays and Stringsin programming.				
3	Apply knowledge of conditional statements, loops, and functions in programming.				
4	Use different operations of Matrices in programming.				
5	Design different models using MATLAB Simulink.				
6	Design GUI for different applications.				
List of	experiments:				
1.	Introduction to MATLAB				
a)	Basics of MATLAB				
2.	Commands, Variables and Operators.				
a)	Write a program to perform arithmetic and logical operations on scalar data.				
b)	Write a program to display sine and cos wave of particular amplitude and frequency.				
3.	Vectors				
a)	Write a program to find addition, subtraction, multiplication, transpose, and magnitude of given vector.				
b)	Write a program to find mean, standard deviation, and variance of given vector.				
4.	Conditional Statements and Functions				
a)	Write a program to show use of if-then-else statement and while loop				
b)	Write a program to import and export data from .csv file.				
5.	Arrays and Strings				
a)	Write a program to display data using string.				
b)	Write a program to compare two given arrays or array elements.				
6.	Operations on Matrix				

a) Write a program to find transpose, determinant, concatenation, and inverse of given matrix.

b) Write a program to solve given linear equation.

7. GUI

- a) To introduce basics of GUI
- b) To design GUI for any one of the programs mentioned above.

8. Simulink

- a) To introduce basics of Simulink
- b) Develop a model to differentiate and integrate sine wave using Simulink.

Text Books:

- 1. MATLAB for Beginners-A Gentle Approach, Peter I. Kattan, 2010, ResearchGate publication
- 2. Getting started with MATLAB, RudraPratap, 2010, Oxford university press.

Reference Books:

- 1. A Guide to MATLAB, Brian R. Hunt, Ronald L. Lipsman, Jonathan M. Rosenberg, 3rd Edition, Cambridge University Press.
- 2. Introduction to MATLAB for Engineers, WilliamJ.Palm, 3rd Edition, McGraw-Hill Education.

SEMESTER:- II SYLLABUS

B. Tech. Sem. II: Electronics & Telecommunication Engineering SUBJECT: - DIFFERENTIAL EQUATIONS AND COMPLEX ANALYSIS

TEACHING SCHEME:		CHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:	
Theory: 03			End Semester Examination: 60 Marks	Credits: 03	
Practica	1:00		Internal Assessment: 40 Marks		
Tutorial	: 01			Credits: 01	
				Total Credit: 04	
Course	Pre-req	uisites:			
Class XII Mat		Class XII Math	ematics, Linear Algebra and calculus		
Course Objectives:		ves:			
1.		To introduce ordinary differential equations for higher order.			
2.		To introduce partial differential equations.			
3.		To introduce complex analysis and conformal mapping.			
4. To teach sequ		To teach sequer	nces, series, and series expansion.		
5. To introduce of		To introduce or	dinary differential equations for higher order.		
6.		To introduce partial differential equations.			
Course	Outcon	nes: After lear	rning this course students will be able to		
1	1 Solve higher differential equations by different methods				

2	Solve partial differential equations by different methods			
3	Demonstrate the methods of Complex Analysis technique.			
4	Impler	ment the Complex Analysis for potential application		
5	Demor	nstrate the knowledge of series and sequences.		
6	Solve series expansion problems.			
UNIT -	- I	Ordinary linear differential equations	(06 Hours)	
		Ordinary linear differential equations of nth order, solution of homogeneous and non- homogeneous equations. Operator method. Methods of undetermined coefficients and variation of parameters, Systems of differential equations. Mass spring system.		
UNIT -	- II	Partial Differential Equations	(06 Hours)	
		Partial differential equations, variable separable method, complementary function and particular integral, initial and boundary value problems (wave equation,1-D and 2-D heat Equation).		
UNIT -	· III	Complex Differentiation and Integration	(06 Hours)	
		gebra of Complex Number (Polar and exponential form, Power and roots, Regions in a complex plan), Analytic functions, Cauchy's integral theorem, Cauchy's integral formula, Derivatives of analytic functions, Singularities, Residues, Poles and Zeros of Analytic Functions, The Residue Theorem		

UNIT -IV	Conformal mapping	(06 Hours)
	G Geometry of analytic functions: conformal mapping, points linear fractional transformations,	
	conformal mapping for other function. Conformal mappings to potential problems: electrostatic	
	fields, use of conformal mapping: modelling, heat problems, fluid flow, Poisson's Integral	
	formula for potentials, General properties of harmonic functions, uniqueness theorem for the	
	Dirichlet problem.	
UNIT -V	Sequences and Series	(06 Hours)
	Review of sequences, series and convergence tests, Power Series, Power Series Expansions of	
	Analytic Functions, Taylor Series (Taylor's Theorem with Proof), Laurent series (Laurent's	
	Theorem without Proof), Leibnitz's Theorem, Maclaurin's Series	
UNIT -VI	Series Expansion	(06 Hours)
	Multiplication, Division, Integration and Differentiation of Power Series, methods for solutions of	
	ordinary differential equations. Legendre equation and Legendre polynomials, Bessel equations and	
	Bessel functions of first and second kind. Orthogonal sets of functions	
Topics for p	ojets based learning*	
	AB to formulate and solve types of differential equations - Initial value problems and Delay differential	equations
	AB to formulate and solve types of differential equations - Boundary value problems and Partial differential	
	ifferential Equation (ODE) solvers in MATLAB, solve initial value problems with a variety of propertie	•
4. Ordinary D	ifferential Equations EULER methods	

5. Ordinary Differential Equations Using built-in function

6. Differential Equations in Python

7. Differential Equations with ODE in Python

8. Partial Differential Equations in Python

9. Solving partial differential equations

10.Complex Line Integration

11. Multi dimentional Conformal mapping

12. Sequences & Series using matlab

13.Sequences and Series -circle packing method

14. An End-to-End Project on Time Series Analysis and Forecasting with Python

15.Time Series Analysis in Python

16.Time Series Classification (with Python)

17.Taylor series with Python

18. Program to print binomial expansion series

*Students in a group of 3 to 4 shall complete any one project from the above list

Textbooks/Reference Books

1.'Advanced Engineering Mathematics' by Erwin reyszig

2.'Advanced Engineering Mathematics' by Dennis G. Zill and Warren S. Wright

3. Applied Mathematics (Volumes I and II) by P.N. Wartikar & J.N. Wartikar

4.HigherEngineeringMathematicsbyB.S. Grewal

5.HigherEngineeringMathematicsbyB.V. Ramana

6.AdvancedEngineeringMathematics

	B. '	Fech. Sem. II: Electronics & Telecon SUBJECT: - Chemistry of Elec	8 8		
TEACI	TEACHING SCHEME: EXAMINATION SCHEME: CREDITS ALLOTTED:				
Theory:	: 03	End Semester Examination: 60 Marks	Credits: 03		
Practical: 02		Internal Assessment: 40 Marks			
Tutorial:00		TW: 50 Marks	Credit: 01		
			Total Credit: 04		
Course	Pre-requisites:				
	Basic knowledge of chemistry, Electrochemical series, Electrode potential, Primary and secondary cells, Capacitor, insulator, classification, and properties of polymers.				
Course	Objectives:				
	• To develop the interest among the students regarding chemistry and their applications in engineering				
	• To develop confidence among students about chemistry, how the knowledge of chemistry is technological field.		mistry, how the knowledge of chemistry is applied in		
• The student should understand the concepts of chemistry to lay the groundwork for subsequent stufield such as E&TC Engineering			istry to lay the groundwork for subsequent studies in the		
Course	Outcomes: After les	urning this course students will be able to			
1		ledge of Electrical Insulating Materials with	its applications		
2	Demonstrate the knowledge of Electrical instituting Waterials with its applications. Demonstrate the knowledge about Dielectric Strength and Insulation Breakdown for various engineering applications.		11		
3		of crystallography to study of crystal structur	6 6 11		
4		Solid Solutions and Two-Phase Solids.			
5		ept of the battery with its applications			
6		epts of spectroscopy and thermogravimetry for	or various engineering applications.		

UNIT – I	Electronic Materials 1	(06 Hours)
	Electrical Insulating Materials: Introduction - Requirements. Classification based on Substances:	
	Gaseous, Liquid and Solid Insulating Materials. Preparation, Properties and Applications of	
	Ceramic Products: White Wares and Glass - Transformer Oil. Electrical Resistivity: Factors	
	influencing Electrical Resistivity of Materials - Composition, Properties and Applications of High	
	Resistivity Materials: Manganin - Constantan - Molybdenum Disilcide – Nichrome.	
UNIT – II	Electronic Materials 2	(06 Hours)
	Dielectric Strength and Insulation Breakdown: Dielectric Strength: Definition, Dielectric	· · · · ·
	Breakdown and Partial Discharges: Gases, Dielectric Breakdown: Liquids, Dielectric	
	Breakdown: Solids, Capacitor Dielectric Materials: Typical Capacitor Constructions, Dielectrics:	
	Comparison. Piezoelectricity, Ferroelectricity, and Pyroelectricity: Piezoelectricity: Quartz	
	Oscillators and Filters, Ferroelectricity, and Pyroelectricity Crystals, Introduction to Compound	
	Semiconductors.	
UNIT - III	Electronic Materials 3	
	The Crystalline State: Types of Crystals, Crystal Directions and Planes, Allotropy and Carbon,	(06 Hours)
	Crystalline Defects and Their Significance: Point Defects: Vacancies and Impurities, Line	(00 110415)
	Defects: Edge and Screw Dislocations, Planar Defects: Grain Boundaries, Crystal Surfaces and	
	Surface Properties, Stoichiometry, Nonstoichiometric, and Defect Structures, Single- Crystal	
	Czochralski Growth. Glasses and Amorphous Semiconductors: Glasses and Amorphous Solids,	
	Crystalline and amorphous Silicon.	
UNIT -IV	Phase rule and Polymers	(06 Hours)
	Solid Solutions and Two-Phase Solids: Isomorphous Solid Solutions: Isomorphous Alloys, Phase	
	Diagrams: Cu–Ni and Other Isomorphous Alloys, Binary Eutectic Phase Diagrams and Pb–Sn	
	Solders. Polymers, Preparation, Properties and Applications of SF6, Epoxy Resin, Conduction	
	Mechanism, Preparation of Conductive Polymers, Polyacetylene, Poly (P- Phenlylene),	
	Polyhetrocyclic Systems, Polyaniline, Poly (Phenylene Sulphide), Poly (1,6-Heptadiyne),	

	Applications.	
UNIT -V	Electrochemistry	(06 Hours)
	Introduction, Acids and Bases, Concept of pH and pOH and Numerical Electrode Potential,	
	Electrochemical Cell, Concentration Cell, Reference Electrodes, Overvoltage, Fuel Cells,	
	Construction and Working of - Acid and Alkaline Storage Battery, Dry Cell, Coin Cell Batteries,	
	Ni-Cd Batteries, Ni-MH Batteries, Li-Ion Batteries, Li-Po Batteries.	
UNIT -VI	Instrumental Methods of Analysis	(06 Hours)
	Introduction, Absorption of Radiation, Instrumentation and Applications of UV-Visible	
	Spectrophotometer and IR Spectrophotometer. Thermal Methods of Analysis TGA, DTA, DSC,	
	Sensors: Oxygen and Glucose Sensor.	
Term Work		
	easure the absorbance of the sample at different wavelengths.	
	ication of Beer-Lambert's Law.	
	mination of Viscosity Average Molecular Weight of Polymer	
	mination of Viscosity of Organic Solvents	
5. To fi	nd the tensile strength of polymer.	
	etermine the pH value of given solutions using pH meter.	
7. To de	etermine pH of soil	
8. To fi	nd EMF of the cell.	
9. To ca	lculate the Equilibrium constant.	
10. To pi	edict the spontaneity of the cell reaction.	
11. To le	arn the specific charge/discharge characteristics of a Lithium- ion (Li- ion) battery through experimenta	l testing of a
remo	te triggered Li- ion Battery.	
12. To P	epare Phenol formaldehyde/Urea formaldehyde resin.	

Topics for projets based learning* 1. To Prepare and for synthesis of the following polymers, a. Bakelite b. Polystyrene c. Epoxy Resin 2. Synthesis properties and applications of polymer. 3. To Prepare one component system with an example 4. To Prepare two component system with an example 5. How to Make a Battery with Metal, Air, and Saltwater 6. Use a Microbial Fuel Cell to Create Electricity from Waste 7. To Prepare fuel cell 8. To prepare lead acid storage battery. 9. To prepare Oxidic Nanomaterials for High Density Storage in Li-ion Batteries 10 Electrochemical forming is a unique additive manufacturing method which uses electrochemical technologies to manufacture, layer-by-layer, parts of complex geometry. 11. The materials chemistry and electrochemistry of the lithium-air battery 12. Challenges facing all-solid-state batteries 13. The materials chemistry and electrochemistry of lithium and sodium-ion batteries 14 Electroplating- the principles, how different metals can be used and the practical applications. 15. Electroplating, Metal Polishing, Anodizing, Phosphating Metal Finishing and Powder Coating Projects *Students in a group of 3 to 4 shall complete any one project from the above list **Text Books:** 1. Polymer Science and technology (2nd Edition), P. Ghosh, Tata McGRAW Hill, 2008. 2. Polymers: Chemistry & Physics of Modern Materials (2nd edition) J.M.G.Cowie, Blackie Academic & Professional, 1994.

- 3. A Text Book of Engineering Chemistry, Shashi Chawla, Dhanpat Rai & Co, 2004
- 4. Engineering Chemistry (16th Edition) Jain, Jain, Dhanpat Rai Publishing Company, 2013.
- 5. Chemical sensors and Biosensors, Fundamentals and applications, Florinel Gabriel Banica, Wiley.

6. Microelectronics Circuits, Adel S. Sedra& Kenneth C. Smith,7th Edition, 2015, ISBN 978-0-19-933913-6,Oxford University Press

Reference Books:

1. Inorganic Chemistry (4th edition), D. F. Shrives and P. W. Atkins, Oxford University,

Oxford, 2006.

2. Reactions, Rearrangements and Reagents (4th edition), S. N. Sanyal, Bharti Bhawan (P & D), 2003.

3. Applications of Absorption Spectroscopy of Organic Compounds (4th edition), John R. Dyer, Prentice Hall of India Pvt. Ltd., 1978.

		В.	Tech. Sem. II: Electronics & Telecon SUBJECT: - DIGITAL ELI		
TEAC	CHING SO	CHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:	
Theory	y: 04		End Semester Examination: 60 Marks	Credits: 04	
Practic	cal: 02		Internal Assessment: 40 Marks		
Tutoria	al: 00		TW& OR: 50 Marks	Credit:01	
				Total Credit: 05	
Cours	e Pre-req	uisites:			
	_	Fundamenta	ls of Number Systems.		
Cours	e Objecti	ves:			
v		T	e Digital fundamentals, Boolean algebra, and its applications in digital systems		
2.		To familiarize with the design of various combinational digital circuits using logic gates			
3.		To introduce the analysis and design procedures for synchronous and asynchronous sequential circuits			
4.		To understand the various semiconductor memories and related technology			
5.		To introduce the electronic circuits involved in the making of logic gates			
Cours	e Outcom	nes: After le	earning this course students will be able to		
1				lgebra.	
2	Apply	different minin	nization techniques on Boolean expression and	d design logic diagram	
3 Analyze & design digital combinational circuits such as of multiplexers, demultiplexers, encoder, decoder, an circuits		plexers, demultiplexers, encoder, decoder, and arithmetic			

4	Demonstrate the knowledge of operations of basic types of flip-flops & the design of FSM.					
5	Analyze & design digital Sequential circuits such as Shift Registers and Counters					
6	Classify	y the characteristics of different logic families, PLDs, Semiconductor memories and their application	IS.			
UNIT -	- T	Introduction to Digital Systems:	(08 Hours)			
	-	Introduction to Digital electronics Fundamentals	(00110015)			
		Number Systems : Introduction to Number Systems-Decimal, Binary, Octal,				
		Hexadecimal, Conversion of number system, Representation of Negative Numbers,1's				
		complement and 2's complement.				
Binary Arithmetic : Binary addition, Binary subtraction, Subtraction using complement and 2's complement, Binary multiplication, and division,						
		Digital Codes : BCD code, Excess-3 code, Gray code, Binary to Excess -3 code conversion and vice versa, ASCII code, EBCIDIC code.				
		Logic Gates: Logical Operators, Logic Gates-Basic Gates, Active high and Active low				
1		concepts, Universal Gates, and realization of other gates using universal gates, Gate				
	Performance Characteristics and Parameters					
UNIT -	- II	Boolean Algebra:	(08 Hours)			
		Boolean Expressions and Truth Tables, Rules and laws of Boolean algebra, Demorgan's Theorems, Duality Theorem, Simplification of Boolean functions by Boolean laws, Shannon's Theorem.	(**********			
		Boolean Function minimization Technique : Introduction: Minterms and sum of minterm form, Maxterm and Product of maxterm form, Reduction technique using Karnaugh maps $-2/3/4/variable$ K-maps, grouping of variables in K-maps, minimize Boolean expression using K-map and obtain K-map from Boolean expression, Quine Mc Cluskey Method				
UNIT -	III	Combinational Logic Design				
		Introduction to Combinational Circuits, Adders: Half-Adder and Full-Adder, Subtractors- Half and Full Subtractor; Parallel adders: Ripple Carry and Look-Ahead Carry Adders.	(08 Hours)			

	BCD adder, BCD subtractor, Parity Checker/Generator, Multiplexer, Demultiplexer,	
	Encoder, Priority Encoder; Decoder, BCD to Seven segment Display Decoder, ALU, Code	
	converters, Magnitude comparators	
UNIT -IV	Sequential Logic Design	(08 Hours)
	Introduction to Sequential Circuits: 1 Bit Memory Cell, Latches: SR latch, Gated latch, Flip- Flops: Types of Flip Flops -RS, T, D, JK, Triggering of Flip Flops, Master-Salve JK Flip flop, Characteristic table of Flip-flop, excitation table of Flip-flop, Study of timing parameters of flip-flop.	
UNIT -V	Shift Registers and Counters:	(08 Hours)
	 Data transmission in shift resister: SISO, SIPO, PISO, PIPO, Bidirectional shift register, universal shift registers. Counters: synchronous counter and asynchronous counter. Introduction to FSM: Moore and Mealy State machine, state machine as a sequential controller. Design of state machines: state table, state assignment, transition/excitation table, excitation maps and equations, logic realization, Effect of clock skew and clock jitter on synchronous designs (Metastability) 	
UNIT -VI	Logic Families and Memory Technology:	(08 Hours)
	Logic Family: Digital IC specification terminology, Logic families: TTL, CMOS, ECL families, Interfacing of TTL to CMOS & CMOS to TTL.	
	Programmable logic devices : Study of PROM, PAL, PLAs. Designing combinational circuits using PLDs.	
	Semiconductor memories: Classification and characteristics of memory, different types of RAMs, ROMs and their applications	

1. Study of basic gates using TTL, CMOS: 7432, 4011, 4050, 4070, 4071, 40106 and Universal Gates.

2. K map-based implementation of combinational logic

3. Design and implementation of Half and Full Adder, Half and Full Subtractor

4. Study of four-bit parallel Adder / Subtractor using IC 7

5. Design and implementation of Code Converters (Binary to Gray, Excess 3 to Binary)

6. Design and implementation of Magnitude Comparator

7. Implementation of combinational logic using MUX

8. Study of Decoder and DEMUX

9. Study of 7 segment decoder driver.

10. Study of Flip Flops (SR FF, D FF, JK FF, T FF)

11. Study of Shift Registers

12. Study of Up-Down Counter and Johnson Counter.

13. Study of Static I/O and transfer Characteristic of TTL

Note: The term work shall be the record of minimum eight experiments performed from the above list

Topics for projets based learning*

1.Survey report of basic gates ICs 7432, 4011, 4050, 4070, 4071, 40106

2. Implement combinational logic Circuit of given Boolean Equation.

3. Implement Half Adder and Half Subtractor.

4. Implement Full Adder using two Half Adders

5. Build 4-bit parallel Adder / Subtractor using IC.

6. Build Code Converters: Binary to Gray

7. Build Code Converters: Excess 3 to Binary)

8. Implement Two Bit Magnitude Comparator using IC 7485

9. Implement given combinational logic using MUX

10. Implement 7 segment decoder driver using IC 7447.

11. Build a Decade counter and Up-Down Counter.

12. Build a Shift Registers: SISO and SIPO

13. Implement the Johnson Counter and Ring Counter.

14.Survey Report on Static I/O and transfer Characteristic of TTL and CMOS.

15. Implement given Boolean Function using PLA.

*Students in a group of 3 to 4 shall complete any one project from the above list

Text Books:

- 1. R.P. Jain, --Modern digital electronics, 3rd edition, 12threprint Tata McGraw Hill Publication
- 2. Anand Kumar, —Fundamentals of digital circuits 1st edition, Prentice Hall of India, 2001
- 3. P.Raja, Digital Electronics, Second Edition, Scitech Publication (India) Pvt.Ltd.

Reference Books:

- 1. A.P. Malvino, D.P. Leach 'Digital Principles & Applications'' -Vith Edition-Tata Mc Graw Hill, Publication.
- 2. J.F.Wakerly "Digital Design: Principles and Practices", 3rd edition, 4th reprint, Pearson Education, 2

B. Tech. Sem. II: Electronics & Telecommunication Engineering SUBJECT: - SEMICONDUCTOR DEVICES AND CIRCUITS-I

TEACHING SCHEME:		EXAMINATION SCHEME:	CREDITS ALLOTTED:	
Theory: 04		End Semester Examination: 60 Marks	Credits: 04	
Practical: 02		Internal Assessment: 40 Marks		
Tutorial: 00		TW & PR: 50 Marks	Credit: 01	
			Total Credit: 5	
Course Pre-re	equisites:			
Elementary F		Electronics, EDA Tool Practice		
	·			
Course Objec	tives:			
1. To introduce		he methods of analysis, design, and simulation of diode circuits		
2.	To introduce	ce the methods of analysis, design, and simulation of BJT biasing circuits		
3. To introduce		methods to analyze and design and simulate BJT amplifier circuits		
4. To introduc		methods to analyze and design and simulate JFET circuits		
5.	To introduce	To introduce methods to analyze and design and simulate MOSFET circuits		
6.	To introduce	the concept ofcurrent mirror and transistorize	d voltage regulator circuits	
	1			
Course Outco	mes: After le	arning this course students will be able to		
1 Analy	ze and design tl	ne diode circuits		
2 Analy	ze and design th	ne BJT biasing circuits		

3	Analyze	e and design the BJT amplifier circuits	
4	Analyze	e and design the JFET circuits	
5	Analyze	e and design the MOSFET circuits	
6	Analyze	e and design the current mirror and transistorized voltage regulator circuits	
UNIT –	·I	DIODE CIRCUITS	(08 Hours)
		Analysis and design of Rectifier circuits (HWR, FWR, Bridge, Dual Complementary), Capacitor input filter, Clippers, Clampers, Voltage Multipliers, Special diodes (Zener diodes, Schottky diodes, Gold-diffused diodes), Switching circuits, Simple shunt regulator using Zener diode (analysis and design)	
UNIT –	·II	BJT CIRCUITS I	(08 Hours)
		Need of biasing circuits, Analysis, and design of BJT biasing circuits like fixed bias, collector to base bias, voltage divider bias, split-supply bias, Concept of DC load line, Concept of stability factor, Derivation of stability factor	
UNIT -	III	BJT CIRCUITS II	(08 Hours)
		Concept of AC load line, BJT as two-port networks, BJT Models small signal models (h- parameter, Ebers-Moll, hybrid –pi and T), Analysis of CE, CB, CC Amplifiers (Derivation of Zi, Zo, Av, Ai and Ap), Frequency response of BJTamplifiers,Single stage CE voltage amplifier design, large signal BJT model, BJT as switch, power BJT	
UNIT -	IV	JFET CIRCUITS	(08 Hours)

	Analysis and design of JFET biasing (Fixed bias, Self-bias, Voltage divider bias), JFET models, Analysis of CS, CD, CG Amplifiers, Frequency response of JFET amplifiers, Single stage CS amplifier design, FET as switch.	
UNIT -V	MOSFET CIRCUITS (8 Hours)	(08 Hours)
	EMOSFET biasing (Fixed bias, negotiated bias/Voltage divide bias), DC load line,MOSFET models, Analysis of MOSFET amplifiers, Single stage CS amplifier design, Frequency response of MOSFET amplifiers,MOSFET as switch, Power MOSFET	
UNIT -VI	OTHER TRANSISTOR CIRCUITS	(08 Hours)
	Concept of current mirror, Analysis of Widlar current source (BJT and MOSFET), Wilson current mirror (BJT and MOSFET), Gilbert gain cell, Series pass transistor voltage regulator, Variable output voltage regulator	
List of experi	ments:	
1. Observe	and measure outputs for rectifier circuits	
2. Observe	and measure outputs clipper, clamper, voltage multiplier circuits	
3. Construc	et BJT biasing circuits (Fixed, Collector to base bias circuit, Voltage divider bias circuit and verify the	e Q-point.
4. Measure	and plot the frequency response of single stage CE voltage amplifier	
5. Construc	ct FET biasing circuits (Fixed, self-bias circuit, Voltage divider bias circuit and verify the Q-point.	

- 7. Construct MOSFET biasing circuits (Fixed, Voltage divider bias circuit and verify the Q-point.
- 8. Measure and plot the frequency response of single stage MOSFET CS voltage amplifier
- 9. Construct BJT and MOSFET switch circuits and compare the performance (power dissipation, transient response)
- 10. Measure and plot regulation characteristics of shunt regulator, series pass transistorized voltage regulator

Topics for projets based learning*

- 1.Build a voltage quadrupler circuit
- 2. Build a low current, regulated power supply
- 3. Build a diode, BJT tester
- 4. Latching burglar alarm
- 5. Moisture detector
- 6. Voltage controlled variable gain amplifier
- 7. Wind shield wiper control
- 8. Metal detector
- 9. Car battery charger
- 10. Under-voltage/Over-voltage indicator
- 11. Crystal oscillator
- 12. DC Flasher with adjustable ON/OFF times
- 13. Emergency Light
- 14. Simple intercom
- 15. Water level indicator with alarm
- *Students in a group of 3 to 4 shall complete any one project from the above list

Reference Books:

- Fundamentals of Electronic Devices and Circuits, David A. Bell, 5th Edition, 2008, ISBN:0195425235, 9780195425239, Oxford University Press.
- 2. Microelectronics Circuits, Adel S. Sedra& Kenneth C. Smith, 7th Edition, 2015, ISBN 978-0-19-933913-6, Oxford University

Press			

	B. Tech. Sem. II: Electronics & Telecommunication Engineering SUBJECT: - PYTHON PROGRAMMING				
TEAC	HING SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:		
Theory	<i>v</i> : 04	End Semester Examination: 60 Marks	Credits: 04		
Practic		Internal Assessment: 40 Marks			
Tutoria	al: 00	TW: 50 Marks	Credits :01		
			Total Credits :5		
Course	e Pre-requisites:				
	Basic progra	mming.			
Course	• To g	course will introduce the concepts of Python l ain practical experience in Python program ling, Graphics.	anguage as software development tool. ming including fundamental concepts, OOPs, Exception		
Course	e Outcomes: After le	arning this course students will be able to			
1	Apply the basic conce	epts of Python programming.			
2	Write basic programs	using control statements.			
3	Use exception handlin	ng in Python programs.			
4	Apply object-oriented	l programming concepts in Python.			
5	Write Python program	n for simple applications using existing librari	es.		

6 Write	e simple graphics programs.	
UNIT – I	Python Basics	(08 Hours)
	Python Introduction Python Installation Relational operators, Bit-wise operators, Logical	
	operators Python Data Types - Numbers (Integer, Floating Point, Complex Numbers), Strings,	
	Lists, Tuples, Dictionaries, List comprehensions, Python Control Statements	
UNIT – II	Python Core	(08 Hours)
	Python Modules & Functions, Lambda, Scope, Python File Handling, Python Regular	
	Expressions, Sequence Types, Input and output, Recursion, Flow Control, Immutable and	
	Mutable Objects	
UNIT - III	Python Exception Handling	(08 Hours)
	Meaning of Exception, Exception Hierarchy Diagram, Types of Exception- Checked Exception,	
	Unchecked Exception Findling -TRY, CATCH, FINALLY, Raising an Exception,	
	User Defined Exceptions	
UNIT -IV	OOPS, UML & OOAD	(08 Hours)
	Object Oriented Programming (OOPs) - Class & Object, Abstraction, Inheritance,	
	Polymorphism, Encapsulation Object Oriented (OO) Modelling Object Oriented Analysis	
	& Design (OOAD)	

UNIT -V	Python Multi-Threading	(08 Hours)			
	Threads in Python [16] (a) Kernel Threads [16] (b) User Space Threads or User Threads, Advantages				
	of Threading, Thread States: Life Cycle of a Thread, Thread & Threading Modules, Forking &				
	Synchronizing Threads, Networking				
UNIT -VI	Python Packages and Graphics	(08 Hours)			
	Numpy: Introduction, data-types, arrays, arrays manipulation, plotting, testing and debugging,				
	Sharing Data using Sockets, Simple applications of python, Scipy, TKinter				
Term Work: Ai	ny 8 of below given list				
	ny given expression involving arithmetic operators.				
2. Evaluate an	y given expression involving logical operators.				
3. Develop py	thon functions to produce given patterns such as diamond, pyramid, triangles.				
4. Usage of di	4. Usage of different functions present in "math" module.				
5. Write a fun	5. Write a function that takes two numbers as input parameters and returns their least common multiple.				
6. Write a function that takes two numbers as input parameters and returns their greatest common divisor.					
7. Write a program that takes a sentence as an input and displays the number of words in the sentence.					
8. Ways to sort list of dictionaries by values in Python – Using lambda function.					
9. Write prog	9. Write program using "matplotlib" module.				
10. Write prog	ram using "NUMPY" module.				
11. Write prog	ram using "Scipy" module.				
<u> </u>					

12. Write program using "TKinter" module.

Topics for projets based learning*

1. Create a Tic-tac-toe game (GUI optional)

2. Build a password encryptor with Hashing.

3. Build Product Price Comparison using webscraping.

4. Create a google image downloader

5. Create a Snake & Ladders game (GUI optional)

6. Build a contact book using indexing

7. Build What's the word game

8. Build Rock, Paper & Scissors game

9. mp3 file organizer - rebuild a music library's structure from mp3 tag data, and reorganize them in folders. Use Multithreading concepts

10. Create an FTP server

11. Build a functional calculator (GUI optional)

12. Python Email Automation

13. Create a Currency converter (GUI optional)

14. Face Detection using Cv2

15. Biometric Fingerprint detection

*Students in a group of 3 to 4 shall complete any one project from the above list

Text Books:

1.Sheetal Taneja, Naveen Kumar, Python Programming, A modular approach, Pearson publication

Reference Books:

- 1. Learning Python 5th Edition, Oreilly Publication
- 2. Beginning Python: From Novic to professional, by Magnus Lie Hetland, Third Edition, Appress Publication

3. Learning with Python by Allen Downey, Jeffrey Elkner, Chris Meyers, Dreamtech Publication

	B. Tech. Sem. II: Electronics & Telecommunication Engineering					
			SUBJECT: - COMPUTER AIDED	DRAFTING		
TEACH	HING SCH	HEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:		
Theory:	00		End Semester Examination: 00	Credits:00		
Practica	ıl: 04		Internal Assessment: 00			
Tutorial	l: 00		TW: 50 Marks	Credit: 02		
				Total Credit: 02		
Course	Pre-requi	isites:				
	1	Mathematics (Class XII)			
Course	Objective	es:				
1.	,	To teach the st	tudentsFundamentals of engineering drawing and	curves		
2.	,	To introduce t	he students Isometric views and projection			
3.	,	To teach the st	tudentsProjections of points, lines, planes & solid	8		
4.	4. To introduce the students Use of CAD tools.					
	L					
Course	Outcome	s: After lear	rning this course students will be able to			
1	Apply dir	mensioning me	ethods and drawing of engineering curves.			
2	Draw orth	hographic proj	ections using I st angle and III rd angle projection Me	ethods*.		
3	Draw Iso	metric views f	rom given orthographic projections*.			

4	Draw projection of Lines, its traces and projections of planes*.		
5	Createprojection of different solids*.		
6	Develop lateral surfaces of solids*.		
*Using C	CAD tools		
UNIT –	I Lines and Dimensioning in Engineering Drawing and Engineering Curves		
	Different types of lines used in drawing practice, Dimensioning–linear, angular, aligned system,		
	unidirectional system, parallel dimensioning, chain dimensioning, location dimension and size dimension.		
	Ellipse by Arcs of Circles method, Concentric circles method. Involutes of a circle,Cycloid, Archimedean Spiral, Helix on cone & cylinder.		
	Introduction to Auto CAD commands.		
UNIT –	II Orthographic Projection		
	Basicprinciples of orthographic projection (First and Third angle method). Orthographic projection of objects by first angle projection method only.Procedurefor preparing scaled drawing, sectional views,and types of cutting planes and their representation, hatching of sections. (Also using AutoCAD commands)		
UNIT - I	III Isometric Projections		
	Isometric view, Isometric scale to draw Isometric projection, Non-Isometriclines, and construction of Isometric view from given orthographic views and to construct Isometric view.		

	(Also using AutoCAD commands)	
UNIT -IV	Projections of Points & Lines	
	Projections of points, projections of lines, lines inclined to one reference plane, Lines inclined to	
	both reference planes. (Lines in First Quadrant Only) Traces of lines. (Also using AutoCAD	
	commands)	
UNIT -V	Projections of Planes	
	Projections of Planes, Angle between two planes, Distance of a point from a given plane,	
	Inclination of the plane with HP, VP.	
	(Also using AutoCAD commands)	
UNIT -VI	Projections of Solids	
	Projection of prism, pyramid, cone, and cylinder by rotation method.	
	(Also using AutoCAD commands)	
List of sheets	<u>:</u>	
1. Types of	f lines, Dimensioning practice, free-hand lettering, 1 st and 3 rd angle methods symbol.	
2. Engineer	ring curves.	
3. Orthogra	aphic Projections.	
4. Isometri	c views.	

- 5. Projections of Points and Lines and planes.
- 6. Projection of Solids.
- 7. Enclosure design

Term work:

Term work shall consist of half imperial size or A2 size (594 mm x 420 mm) sheets.

All sheets should complete in drawing hall manually and sheet no 2-7 also completed using AutoCAD with printout onA2 size papers.

Text Books/Reference Books:

- 3. "Elementary Engineering Drawing", N. D. Bhatt, CharotarPublishing house, Anand India,
- 4. "Text Bookon Engineering Drawing", K. L. Narayana&P. Kannaiah, Scitech Publications, Chennai.
- 5. "Fundamentals of Engineering Drawing", Warren J. Luzzader, Prentice Hall of India, New Delhi,
- 6. "Engineering Drawing and Graphics", Venugopal K., New Age International publishers.
- 7. "Engineering Drawing", M. B. Shah and B.C. Rana, 1st Ed, Pearson Education, 2005
- 8. "Engineering Drawing (Geometrical Drawing)", P. S. Gill, 10th Edition, S. K. Katariaand Sons, 2005
- 9. "Engineering Drawing", P. J. Shah, C. Jamnadasand Co.,1stEdition,1988