Proposed Structure of M.Tech Electrical Engineering (Power Systems) CBCS Pattern (2015-16)

STRUCTURE & EXAMINATION PATTERN	
--	--

Semester I Subjects	Tea	ching			Examina (M	tion Scheme		Total D Total Total	uration: 2 Marks :50 Credits: 1 Exam	20 hrs/wee 00 .8 ination	k Total Credit
	Hrs.	Week			(141)	ai KS)			(Cr	edits)	s
	L	Р	Theory	Unit Test	Attend ance	Tutorial/as signments	TW	Pract/ Oral	TH	TW/PR /OR	
Research Methodology	04		60	20	10	10	-		04	-	04
FACTS and HVDC	04		60	20	10	10	-		04	-	04
Advanced Microcontroller & Its Applications	04	02	60	20	10	10	25	25	04	01	05
Power System Modeling	04	02	60	20	10	10	25	25	04	01	05
Total	16	04	240	80	40	40	50	50	16	02	18

Semester II								To T T	tal Duratio otal Marks otal Credit	on: 20 hrs/we s :500 ts: 18	eek
Subjects	Teac Scheme Hrs./V	hing e (Hrs) Week		Examination Scheme Examination To (Marks) Scheme Cr (Credits) Cr Cr						Total Credits	
	L	Р	Theory	Unit Test	Attendan ce	Tutorial/ assignme nts	TW	Pract/ Oral	ТН	TW/PR/ OR	
Power Systems Dynamics	04		60	20	10	10			04	-	04
Digital Protection of Power System	04	02	60	20	10	10	25	25	04	01	05
PLC & SCADA	04	02	60	20	10	10	25	25	04	01	05
Elective - I	04		60	20	10	10			04		04
Total	16	04	240	80	40	40	50	50	16	02	18

Semester III Total Duration: 28 hrs/week Total Marks : 500 Total Credits: 40									s/week		
Subject	Teac Schem Hrs./	ching e (Hrs) Week	Examination Scheme Examination To Scheme Cr (Credits)						Total Credits		
	L	Р	Theory	Unit Test	Attenda nce	Tutorial/ assignme nts	TW	Pract/ Oral	ТН	TW/PR /OR	
Power Quality Issues	04	02	60	20	10	10	25	25	04	01	05
Elective –II	04	02	60	20	10	10	25	25	04	01	05
Self-Study Paper-I	04		60	20	10	10	-	-	04	-	04
Dissertation Stage –I	-	07	-	-			25	25		21	21
Seminar	-	05	-	-			25	25	-	05	05
Total	12	16	180	60	30	30	100	100	12	28	40

Elective – I	Elective - II
a) Power Sector Restructuring & Deregulationb) Power system planning & reliability	a) Advanced Control systemb) Advanced Power Electronics & Drives

Semester IV								Tota T T	al Durati 'otal Mai 'otal Cre	ion: 14 h rks : 325 dits: 34	rs/week
Subject Teaching Examination Scheme Scheme (Hrs) Hrs./Week Hrs./Week									Exam Scł (Cro	ination neme edits)	Total Credits
	L	Р	Theory	Unit Test	Attendanc e	Tutorial /assignm ents	TW	Pract/ Oral	ТН	TW/P R/OR	
Self-Study Paper-II	04		60	20	10	10	-	-	04	-	04
Dissertation Stage –II	-	10	-	-		-	150	75		30	30
Total	04	10	60	20	10	10	150	75	04	30	34

List of Self Study paper I & II

Self Study Paper I	Self Study Paper II
Condition Monitoring of Electrical Equipments	Electrical Power Capacitors
Energy Storage Devices	Nano technology & its applications in Electrical
	Engineering
Digital Measurement Techniques	High voltage insulation system & design
Energy Conservation & Audit	Use of synchronized measurement techniques in
	power system
Solar PV & Wind energy systems	Distributed Generation
Demand response & demand side management	Smart Grid - Automation System for State
	Transmission Utility
Digital Signal Processing Applications in Power	Substation design
Systems	

		RESEARCH METHODOLOGY		
TEACHIN	NG SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTEI):
Theory: (04 Hours / Week	End Semester Examination: 60 Marks	04 Credits	
		Continuous Assessment: 40 Marks		
UNIT - I	Fundamentals			(08 Hours)
	Definition, Research	h Characteristics, Research Need, Objectives	and types of	
	research, Motivatio	n and objectives - Research methods vs M	lethodology,	
	Types of research -	- Descriptive vs. Analytical, Applied vs. F	fundamental,	
	Quantitative vs. Quantitative	alitative, Conceptual vs. Empirical		
UNIT - II	Formulation of resea	arch problem		(08 Hours)
	Research Formulati	ion – Defining and formulating the researc	h problem -	
	Selecting the proble	em - Necessity of defining the problem - In	nportance of	
	literature review in	defining a problem – Literature review –	Primary and	
	secondary sources -	- reviews, treatise, monographs-patents – wel	b as a source	
	– searching the web	- Critical literature review – Identifying gap	areas from	
	literature review -	Development of working hypothesis. Sur	nmarizing a	
	Technical Paper -su	mmary template, Online tools - Google, Cit	eSeer, ACM	
	Digital Library, I	EEE, The on-line Computer Science b	oibliography,	
	Searching patents			(0011)
UNII - III	Research design met	thods		(USHours)
	Research design, sa	mpling design and scaling techniques – Res	earch design	
	- Basic Principles-	Need of research design — Features of go	od design –	
	Important concepts	s relating to research design, basic p	rinciples of	
	experimental design	ns, implications of sample design, steps in sam	nple design,	
	criteria of selecting	g sampling procedure, characteristics of good	od sampling	
	design, different ty	pes of sample design. Scaling techniques: r	neasurement	
	scales, sources of	error, technique of developing measur	rement tool,	
	important scaling te	chniques, scale construction techniques.		(00 11)
UNIT - IV	Statistical analysis			(08 Hours)
	Data Collection and	d analysis:- Observation and Collection of	primary and	
	secondary data - M	fethods of data collection, processing operation	ons, types of	
	analysis, statistics i	n research, measures of central tendency,	measures of	
	dispersion, measur	es of asymmetry, measures of relationsl	nips, simple	
	regression analysis,	multiple correlation and regression, partial co	orrelation.	
UNIT - V	Research Paper & T	hesis writing		(08 Hours)
	Reporting and thesi	s writing – Structure and components of scien	ntific reports	
	- Types of report -	Technical reports and thesis - Significance	– Different	
	steps in the prepara	tion – Layout, structure and Language of ty	pical reports	
	– Illustrations and	tables - Bibliography, referencing and foot	notes - Oral	
	presentation – Plann	ning – Preparation – Practice – Making presen	tation –	

	Use of visual aids - I	mportance of effective communication - Documentation	
	and presentation too	ls: LATEX. Types of technical papers - Journal papers	
	Conference papers.	Survey papers. Poster papers Review papers	
	Comparison Struct	ure of a survey conference and journal paper	
	Organization and	flow of thesis/ Project report Research proposal:	
	preparation budgeti	ng presentation funding agencies for engineering	
	research,	ng, presentation, randing ageneies for engineering	
UNIT -	Research ethics, IPI	R and publishing	(08 Hours)
VI			
	Ethics: ethical issues.		
	IPR: intellectual pro	perty rights and patent law, techniques of writing a	
	Patent, filing proce	dure, technology transfer, copy right, royalty, trade	
	related aspects of int	ellectual property rights Publishing: design of research	
	paper, citation and a	cknowledgement, plagiarism tools, reproducibility and	
	accountability.		
Text Book	s:		
1. Ko	othari, C.R., Research	Methodology: Methods and Techniques. New Age Interna	ational
2. Ga	rg, B.L., Karadia, R.,	Agarwal, F. and Agarwal, U.K., An introduction to Resea	rch
Me	thodology, RBSA Pub	lishers	
3. Su	resh Sinha, Anil K Dh	iman, Research Methodology, ESS Publications, Volumes	2
4. Da	y R.A., How to Write	and Publish a Scientific Paper, Cambridge University Pre	ess
5. W	adehra, B.L. Law relat	ing to patents, Trade Marks, copyright designs and geogra	aphical
ind	ications. Universal Lav	w Publishing	
Reference	Books:		
1. Lo	uis Cohen, Lawrence	Manion and Keith Morrison, Research Methods in Educat	tion, 7th
Ed	ition, Cambridge Univ	versity Press, ISBN – 978-0415-58336-7	
2. A	nthony, M., Graziano,	A.M. and Raulin, M.L., Research Methods: A Process of	
Inc	quiry, Allyn and Bacor	1	
3. R	anjit Kumar, Research	Methodology: A Step by Step Guide for Beginners, 2nd I	Edition,
AI	PH Publishing Corpora	tion	
4. Le	edy, P.D. and Ormrod	, J.E., Practical Research: Planning and Design, Prentice I	Hall
5. Fi	nk, A., Conducting Re	esearch Literature Reviews: From the Internet to Paper. Sa	ige
Pu	blications		
6. Le	slie Lamport, 'Latex:	A document preparation system' Addison Wesley, Readin	lg,
Ma	ssachusetts, second		
Syllabus fo	or Unit Test:		
Unit Test -	1	UNIT – I, UNIT – II, UNIT - III	
Unit Test -	2	UNIT – IV, UNIT – V, UNIT - VI	

	FACTS & HVDC						
TEACHING	<u>S SCHEME:</u>	EXAMINATION SCHEME:	CREDITS	ED:			
Theory: 04	Hours / Week	End Semester Examination: 60 Marks	04 Credits				
		Continuous Assessment: 40 Marks					
UNIT - I	FACTS:			(08 Hours)			
	Conventional met reactors, Phase sh AC transmission of converter structur topologies, Conv control issues	hods to increase transmission capacity, S ifting transformers, Synchronous condense controllers Basics, Challenges and needs, S es, AC controller based structures, DC lir erter output and harmonic control, Powe	eries, Shunt ers, Flexible Static Power nk converter er converter				
UNIT - II	Shunt and Series	Compensation:		(08 Hours)			
	Operation and con Capacitor, SVC, S SVC, Power os resonance, TCSC TCSC, Static Syn	ntrol of thyristor controlled reactor, Thyrist STATCOM configuration and control, App cillation damping, Mitigation of sub-s coperation, Layout and protection, App chronous Series Compensator (SSSC)	tor switched plications of synchronous lications of				
UNIT - III	Unified Power F	low Controller:		[08 Hrs]			
	UPFC configurati Control scheme f Dynamic perform studies in UPFC e	on, Independent real and reactive power factor UPFC, Basic control system for P and ance, Operational constraints of UPFC, embedded systems	low control, l Q control, Power flow				
UNIT - IV	General Backgro	ound of HVDC Transmission:		(08 Hours)			
	EHV AC versus HVDC link - Mc HVDC link, Equ phase six pulse ar waveforms. Effect Control of DC vo	HVDC Transmission, Different config phopolar, Bipolar, Back to Back, Power fl ation for HVDC power flow, Connection and twelve pulse converter bridges, Voltage et of delay angle, Extinction angle, Over ltage	gurations of low through ons of three and current erlap angle,				
UNIT - V	Multi Terminal	HVDC:		(08 Hours)			
Bipolar HVDC terminal, Converter transformer connections, Switching arrangements in DC yard for earth return to metallic return, HVDC switching system, Switching arrangements in a bipolar HVDC terminal, Sequence of switching operations, HVDC circuit breakers, DC current interruption, Commutation principle, Probable types and applications of HVDC circuit breakers, Multi-terminal HVDC systems, Parallel tapping, Reversal of power, Configurations and types of multi-terminal HVDC systems, Commercial multi terminal systems							
UNIT - VI	Protection and C	Control:		(08 Hours)			
	Faults and abnorn Pole-wise segrega reenergizing, Pro DC yards, Integra control, Block di	nal condition in bipolar, Two terminal HV ation, Protective zones, Clearing of DC lin tection of converters, Transformer, Conve ation of protection and controls, Hierarchic lagram, Schematic diagram, Current con	DC system, he faults and erter valves, cal levels of htrol, Power				

	control, DC voltag	e control, Commutation channel, Master control,	
	Station control, Lea	ad station, Trail station, Pole control, Equidistant	
	firing control, Synch	ronous HVDC link, Asynchronous HVDC Link	
Text Books:			
1. E.Acha	, V.A.Agelidis, O.A	Anaya-lara and TJE MillerNewnes, Power Electron	ic control in
Electr	rical Systems Oxford	L.	
2. N.G. Hi	ngorani and L.Gyug	i, Understanding FACTS- IEEE Press, New York.	
3. J. Arrila	ga, Y.H.Liu and N.F	R.Watson, Flexible Power Transmission- The HVDC	Options,
John Wi	iley and sons Ltd., N	lew York.	
Reference Bo	oks:		
1. TJEN	Miller, "Reactive Pov	wer Control in Electric Systems", John Wiley	
2. Padiya	ar K R "FACTS Con	trollers in Power Transmission & Distribution", New	Age.
3. R. Mc	han and R.K.Varma	a, "Thyristor-Based FACTS Controllersfor Electrical	Transmission
System	ns", IEEE Press.		
Syllabus for U	Unit Test:		
Unit Test -1	l	JNIT – I, UNIT – II, UNIT – III	
Unit Test -2	l	JNIT – IV, UNIT – V, UNIT – VI	

Advance Micro controllers and applications							
TEACHING	SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTED:				
Theory: 04	Hours / Week	End Semester Examination: 60 Marks	04 Credits				
		Continuous Assessment: 40 Marks					
		TW&OR : 50 Marks	01 Credits				
UNIT - I	Introduction to	PIC 16F8XX family and development to	ools. CPU (08 Hours)				
	architecture and	instruction set. Harvard architecture and	pipelining,				
	program memory	considerations, register file structure and	addressing				
	modes, CPU regi	sters.	-				
UNIT - II	PIC peripherals		(08 Hours)				
	I/O ports, extern	al interrupts and timers, timer operation, A	DC, short				
	overview of sync	hronous serial port, serial peripheral interface	e I2C bus.				
UNIT - III	Learning MPL	AB (V 5.0 or above) Integrated de	velopment (08 Hours)				
	environment fro	m Microchip (Assembler and simulator)	,Study of				
	applications like	motor control, temperature control, lamp din	nmer, 4X4				
	matrix keyboard	and LCD interfacing etc.					
UNIT - IV	ARM & AVR	Processors : RISC, ARM design philosop	(08 Hours)				
	fundamentals, in	istruction set, thumb instruction set, exc	ception &				
	interrupt nandling	g, efficient C programming, optimizing ARM	ntorfacing				
	communication li	nks and design issues	interracing,				
UNIT - V	Interfacing	nics and design issues.	unication (08 Hours)				
	synchronization	of processes tasks threads devices & 1	huses for				
	networks, hardw	are-software co-design embedded program	mming in				
	C/RT Linux	6 I I 6	6				
UNIT - VI	Real time operat	ing systems: Survey of software architectur	res- round (08 Hours)				
	robin, with inter	rupts, function queue scheduling, RTOS ar	chitecture,				
	selecting an arcl	nitecture, task states, task and data semap	hores and				
	shared data, mes	sage queues, mailboxes ,pipes, timer function	ns, events,				
	memory manager	nent, interrupt routines in an RTOS environn	nent, basic				
	design using R	TOS, embedded software development too	ols, Micro				
	C/OS- II, VX wo	rks.					
Reference B	ooks:	<i>«</i> , , , , , , , , , , , , , , , , , , ,					
1. Micr	ochip PIC family f	Viicrocontroller handbook	a Asia IDE				
2. Desi	gn with PIC micro	controllers –John Peatman, Pearson Education	I ASIA, LPE				
J. RAJK	on 2003	system –arenneeture, programming and de	sign , mini ruoncation,				
4 Davi	d Simon " An emb	edded software Primer" Pearson education	Asia				
5 Iona	than W. Valvan	Brooks Cole" Embedded Microcomm	uter systems-Real time				
inter	facing" Thomson I	Learning	and systems rour time				
Syllabus for	Unit Test:						
Unit Test -1		UNIT – I, UNIT – II, UNIT – III					
Unit Test -2		UNIT – IV, UNIT – V, UNIT – VI					

		Power System Modeling		
TEACHING	SCHEME:	EXAMINATION SCHEME:	CREDITS ALL	OTTED:
Theory: 04	4Hours / Week	End Semester Examination: 60 Marks	04Credits	
	-	Continuous Assessment: 40 Marks		
-		PR & OR : 50 Marks	01 Credits	
UNIT – I	Modeling of Non-Elect	rical Parameters:		(08 Hours)
	Different areas of po	wer system analysis, Need for mathematica	al modeling of	
	power system, Simpli	ied models of non-electrical components s	such as boiler,	
	steam & hydro turbine	governor system		
UNIT – II	Modeling of Transform	ners:		(08 Hours)
	Transformer modeling	for two winding transformer, tap-changer,	phase shifting	
	transformer, three win	ding transformer and auto-transformer		
UNIT – III	Modeling of Transmiss	ion Line:		(08 Hours)
	Modeling of transmiss	ion network, Transformation to Alpha-Bet	a components	
	using D-Q components	Steady state equations	-	
UNIT – IV	Synchronous Machine	Modeling:		(08 Hours)
	Introduction, Park's T	ansformation, Flux Linkage Equation, Volta	age Equations,	
	Formulation of State-S	pace Equation, Current Formulation, Per Ur	nit Conversion,	
	Normalizing Voltage e	quations, Normalizing Torque Equations, To	rque & Power	
	Equivalent Circuit of Sy	nchronous Machine		
UNIT – V	Excitation System Mod	eling :		
	Types of excitation syst	ems, Control and protective systems, Modelin	ng of	(08 Hours)
	excitation systems (exc	itation system components and entire excitat	ion system,	
	Voltage Response Ratio	, Exciter voltage ratings		
UNIT – VI	Load Modeling:			
	Basic Load Modeling co	ncepts, Static load representation, Dynamic lo	bad	(08 Hours)
	representation, Inducti	on motor (as load) modeling, synchronous mo	otor (as load)	
	modeling, acquisition c	f load model parameters		
Text Books	S:			
1. K. R. P	adiyar", Power System D	ynamics", B.S. Publications		
2. John J.	Granier & W.D. Stevens	on Jr., "Power System Analysis", 4" Edition, N	AcGraw Hill Inte	rnational
Studer	nt Edition		1	nd To the
3. Olle El	legard, "Electrical Energy	System Theory - An Introduction", TMH Publis	shing Company, 2	Edition
4. Kundu	r, "Power System Dynam	ICS & Control", IEEE Press, New York		
Defense	Deelee			
Reference	BOOKS:			
1. An	aerson & Foud, "Power	system Control & Stability", Vol-I, IEEE Press, I	New York	
2. P.S	S.K. Murthy, " Power Syst	em Operation & Control		
Cullabora f	u linit Tost			
Syliabus fo				
Unit lest -	1			
Unit lest -2	2			
Unit Test-3		UNIT –V, UNIT-VI		

		Power System Dynamics		
TEACHING	SCHEME:	EXAMINATION SCHEME:	CREDITS ALLO	OTTED:
Theory: 0	4 Hours / Week	End Semester Examination: 60 Marks	04 Credits	
	-	Continuous Assessment: 40 Marks		
		·		
UNIT - I	Classical Methods of P	ower System Dynamic Studies		(08 Hours)
	Equality and inequality	constraints in power system operation, state tra	nsition	
	diagram, concept of sy	stem security and stability, classical model of syst	tem of one	
	machine connected to	infinite bus, Clark diagram for two machines serie	es	
	reactance system, exte	nsion of Clark diagram to cover any reactance ne	etwork,	
	elementary model of o	verall power system		100.00
UNIT - II	Small Signal Stability:			(08 Hours)
	Small signal analysis, a	inalysis of synchronizing & damping torque, stat	te equation	
	for small signal model,	Simplified synchronous machine model, calculati	ion of initial	
	conditions, system sin	mulation, improved model of synchronous mac	chine, small	
	Large Signal Analysis			(08 Hours)
	Elementary view of	transient stability Large signal analysis Ana	alvsis using	(00 110013)
	numerical integration	methods (Modified Fuler's, Runge-Kutta), Sin	nulation of	
	nower system dynamic response. Analysis of unbalanced faults Case study of a			
	large system		,	
UNIT - IV	Power System Stabiliz	ers:		(08 Hours)
	Basic concepts of cont	rol signals in power system stabilizers (PSS), Str	ructure and	
	tuning, Field implemen	tation, PSS design and application, Future trends		
UNIT - V	Multi-machine system	:		(08 Hours)
	Simplified model, Imp	roved model of the system for linear load, Inclus	sion of load	
	and SVC, Introduction	to analysis of large power system		
UNIT - VI	Voltage stability:			(08 Hours)
	Definition, Factors affe	ecting voltage stability & collapse, Analysis & cor	mparison of	
	angle & voltage stabi	lity and voltage instability & collapse, Control	of voltage	
	instability, islanding	- necessity, methods, advantages and disc	advantages,	
	Implication on power s	ystem dynamic performance		
Text Book	<u>s</u> .			
1. An	derson &Foud, "Power system	Control & Stability". IEEE press. New York		
2. Oll	eElgerd, "Electrical Energy Sy	ystem Theory - An Introduction", TMH		
Reference	Books:			
1. K I	R Padiyar, "Power System Dy	namics", B S Publications		
2. Pra	bhaKundur, "Power system S	tability & control", TMH		
3. C.V	W.Taylor, "Power System Vol	tage Stability", TMH		
4. R.	A. Walling, "Distributed Gen	eration Islanding", N.W. Miller		
Syllabus fo	or Unit Test:			
Unit Test -	1	UNIT – I, UNIT – II, UNIT – III		
Unit Test -	2	UNIT – IV, UNIT – V, UNIT – VI		

	Digi	tal Protection of Power System		
TEACHING S	SCHEME:	EXAMINATION SCHEME:	CREDITS ALL	OTTED:
Theory: 04	Hours / Week	End Semester Examination: 60 Marks	04 Credits	
		Continuous Assessment: 40 Marks		
		TW & OR : 50 Marks	01 Credit	
UNIT – I	Introduction:			(08 Hours)
	Need for Power system	protection, Digital Protection: State of Art	, Merits of	
	Microprocessor relaying s	cheme, Power System Components, Basic Pl	nilosophy of	
	Protection Scheme, Sectio	n of Protection Scheme, Circuit Breakers and R	elays, Types	
	and Applications. Architect	ure of Modern Digital Relay		
UNIT - II	Static Relays:			(08 Hours)
	Introduction to Static Relay	y, Overcurrent Relay, Distance Relay, Protection	Schemes of	
	transmission lines, Switch	ed distance relay, Poly-phase relay, Relay as C	omparator -	
	Dual input Comparator, Re	elay characteristics by comparison of constants,	, Multi-input	
	comparator, Pilot Relaying	Scheme		
UNIT - III	Elements of Digital Protec	tion:		(08 Hours)
	Basic components of a digi	tal relay, Signal conditioning subsystem: Transd	ucers, Surge	
	protection circuits, Analog	filtering and analog multiplexers, Conversion	subsystems,	
	Sampling Theorem, Digital	filter signal aliasing error, Sample and hold ci	rcuit, Digital	
	multiplexing, Digital to an	alog conversion, Analog to digital conversion,	Digital relay	
	subsystem, Digital relay as	unit		(22.11.)
UNIT – IV	Digital Protection of Trans	mission Line:		(08 Hours)
	Protection scheme of tran	smission line, Distance Relay, Travelling wave re	elays. Digital	
	protection scheme based	on fundamental signal: hardware design, softw	ware design,	
	Digital protection of El	AV/UHV transmission line based on trave	elling wave	
	phenomena, New relaying	scheme using amplitude comparison		(00 110.000)
	Equits in Transformer, Sch	amos used for Transformer Protection, Digital	Protoction of	
	Transformer			
	Faults in Synchronous ge	nerator Protection schemes for Synchronous	generator	
	Digital Protection of Synch	ronous Generator	generator,	
UNIT – VI	Artificial Intelligence in Po	wer System Protection:		(08 Hours)
	Introduction. An Expert Sv	stem (FS) for Protective Relay Settings: Introduc	tion	(00 110 010)
	Problem Description, FS Ar	pproach. Typical Application. Fuzzy Logic (FL) for	Power	
	system Protection: Introdu	ction. Problem Description. FL Approach. Artific	cial Neutral	
	Network (ANN) in Phase Se	election: Introduction, Problem Description, Me	asurement	
	of fault generated in high f	requency components, ANN Approach		
Text Books:				
1. "Dig	gital Protection – Protective	Relaying from Electro-Mechanical to Microproc	essor" By L.P.	Singh. 2 nd
Edit	ion, Reprint-2004, New Age	International Publisher, New-Dehli.	,	J
2. "Dig	gital Power System Protectic	n" By S.R. Bhide. PHI Learning Private Limited,	New Delhi.	
3. "Art	tificial Intelligence Technique	es in Power Systems", By Kevin Warwick, Authe	r Ekwue & Raj	Aggarwal,
Pub	lication : Institution of Elect	rical Engineers, London, UK.		
4. "Dig	gital Protection for Power sy	stem" by A.T Johns and S.K. Salman. Peter Pere	grinus Ltd. Of ⁻	The Institute
of E	lectrical Engineers, London,	United Kindom.		
5. "So	ft Computing Techniques ar	nd its Applications in Electrical Engineering" By I	Dr. Devendra C	haturvadi,

Publication: Springer	– Verlag Berlin Heidelburg.
Reference Books:	
 "Power System Prote Association. Publishe 	ction 4: Digital Protection and Signalling" edited by ETA Electricity Training d by Institute of Engineers, London, UK.
2. Digital Signal Proces Szafran, Andrzej Wisz	sing in Power System Protection and Control [®] By Waldemar Rebizant, Janus; niewski.
2. Digital Signal Proces Szafran, Andrzej Wisz	sing in Power System Protection and Control" By Waldemar Rebizant, Janus: zniewski.
Szafran, Andrzej Wisz	sing in Power System Protection and Control [®] By Waldemar Rebizant, Janus; niewski.
2. Digital Signal Proces Szafran, Andrzej Wisz Syllabus for Unit Test: Unit Test -1	sing in Power System Protection and Control [®] By Waldemar Rebizant, Janus: zniewski. UNIT – I, UNIT – II, UNIT - III

		PLC and SCADA		
TEACHING S	CHEME:	EXAMINATION SCHEME:	CREDITS ALL	OTTED:
Theory: 04 H	lours / Week	End Semester Examination: 60 Marks	04 Credits	
		Continuous Assessment: 40 Marks		
		Term Work: 50 Marks	01 Credits	
	1			
UNIT – I	Introduction to PLC			(08 Hours)
	Definition & History of Pl	LC, Overall PLC system, PLC Input and Out	put modules, CPU,	
	Interfaces, Power supplie	es, PLC advantages and disadvantages, Se	election criteria for	
	PLC, Architecture of Ind	duction to Sequence Control, Process Col	alay Laddor Logic	
	Hardware environment	duction to sequence control, rics and h	elay Laudel Logic,	
UNIT – II	PLC Programming			(08 Hours)
	Programming equipment	ts, Construction of PLC ladder diagram,	Basic components	(00 110415)
	and symbols in ladder	diagram, Ladder logic, Functional bloc	k, Structural text,	
	Instruction, trouble sho	oting, features, programming ON/OFF I	nputs to produce	
	ON/OFF outputs, Networ	king of Sensors, Actuators and Controllers	: The Fieldbus, The	
-	Fieldbus Communication	Protocol		
UNIT – III	PLC Applications			(08 Hours)
	Analog PLC operation,	PID control of continuous processes, si	mple closed loop	
	interface Motors Contr	stem using Proportional, integral & Del	ad protection DC	
	motor controller Variable	e speed (Variable Frequency) AC motor Dr		
UNIT – IV	SCADA			(08 Hours)
	Need of SCADA system,	Features, SCADA architecture – First g	eneration, Second	
	generation, Third genera	tion, HMI, MTU, RTU, IED's, 7 Layers of O	SI, Communication	
	requirements for SCADA	(communication protocols – DNP, IEC,	Ethernet, TCP/IP,	
	Modbus, UDP), Client – S	Server based communication concept, SCA	DA Benefits	
UNIT – V	SCADA in Power System	n		(08 Hours)
	Operation and control of	interconnected power system, Automatic	substation	
	State estimation SCADA	tion, Energy Management System (EMS), s	system security,	
LINIT – VI	Supervisory Manageme	nt		(08 Hours)
	Networked SCADA enviro	nment with implementation examples. Su	hstation	(00 110013)
	Automation and Equipme	ent condition monitoring using SCADA. Dis	tribution system	
	design mapping, trouble	call management, Customer level intellige	, nt automation	
	system, computer level m	nonitoring and control of equipments		
Text Books:				
1. Ters	on, "Power System Control	Technology", Prentice Hall		
2. Gree	en, J. N, Wilson, R, "Conti cic 2007	rol and Automation of Electric Power Di	stribution Systems"	, Taylor and
Fran 3 Turn	us, 2007 Per M/ C "Epergy Manage	ment Handbook" 5 th Edition 2004		
2. Turn 4. Gary	Dunning "Introduction to	Programmable Logic Controllers" Thomse	on 2 nd Edition	
5, John	W. Webb. Ronald A. Reis	"Programmable Logic Controllers: Principle	es and Application"	5 th Edition
6. Stua	rt A Boyer, "SCADA supervi	sory control and data acquisition"		
	, ,	,		

Reference Books:				
1. Handschin, E. "Energy Management Systems", Springer Verlag, 1990				
2. Gordan Clark, Deem Reynders, "Practical Modem SCADA Protocols"				
Syllabus for Unit Test:				
Unit Test -1 UNIT – I, UNIT – II, UNIT – III				
Unit Test -2	UNIT – IV, UNIT – V, UNIT - VI			

(Elective – I) Power Sector Restructuring & Deregulation				
TEACHING	SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTI	ED:
Theory: 0	4 Hours / Week	End Semester Examination: 60 Marks	04 Credits	
		Continuous Assessment: 40 Marks		
UNIT - I	Power Sector in India			(08
	Introduction to various institutions in an Indian Power sector such as CEA, Planning Commissions, PGCIL, PFC, Ministry of Power, State and Central governments, REC, Load Dispatch Centers, Utilities and their roles. Critical issues / challenges before the Indian power sector, Electricity act 2003-Provision in the Generation, Transmission& Distribution Sector, Various national policies and guidelines under this act.			
				(0.0
UNIT - II	Fundamentals of Econom Fundamentals of econom behavior, Market Equilibr Total cost (TC), Average f and Marginal cost (MC) Perfectly competitive man of calculations of Intern Role of regulation and eve economic regulation, Reg	Nics& Power Sector Regulation nics applicable to Power Sector, Consumerb rium, Short- run & Long- run costs, Various cost fixed cost (AFC), Average variable cost (AVC), A Relationship between short-run and long-run rket, Concept of life cycle cost, Annual rate of al Rate of Return(IRR) and Net Present Value olution of regulatory commission in India, Type ulatory process in India.	ehavior, Supplier sts of production- Average cost (AC) in average costs, return, methods e(NPV) of project, as and methods of	(08 Hours)
	Power Tariff Different tariff principles Consumer tariff structure tariff, fixed and variable based penalties and incer of different tariff structur time to time. Effect tariff,Availability based ta	(marginal cost, cost to serve, average cost), es and considerations, different consumer cate charges, time of day, interruptible tariff, ar ntives etc., Subsidy and cross subsidy, life line t es for different load patterns. Government poli of renewable energy and captive power riff, Latest reformsand amendments	gories, telescopic ad different tariff ariff, Comparison cies in force from generation on	(08 Hours)
		a and market referm		(00
	Introduction to power set power industry, Understa competition, The market Different industry structu arrangements-Monopoly Retail competition mode Bilateral / forward contra TSO model,Reasons and world-The US, The UK, Management, Ancillary Set	ector restructuring, Reasons for restructuring anding the restructuring process-Entities involu- place mechanisms and Sector-wise major ch res and ownership models, Market models bas Model, Single buyer Model, Wholesale compe- el, Marketarchitecture, Timeline for various acts, The spot market, Models for trading arran- objectives of deregulation of various power s The Nordic Pool and The developing cou- ervices	/ deregulation of ved, The levels of hanges required, ed on contractual etition model and energy markets, ngements, ISO or ystems acrossthe ntries.Congestion	(08 Hours)
UNIT - V	Electricity Markets Pricin	g and Non-price issues		(08
	Electricity price basics, M spot pricing and real time power flow Spot prices constrains and real spot supply and service, env	arket Clearing price (MCP), Zonal and locationa pricing, Dispatch based pricing, Power flows ar for real and reactive power. Unconstrained prices.Non price issues in electricity restruc ironmental and social considerations),Global	n MCPs, Dynamic, nd prices. Optimal real spot prices, turing (quality of experience with	Hours)

	electricity reforms in diffe	rent countries.	
UNIT - VI	Transmission Planning an	d Pricing	(08
	Transmission planning& o	peration in open access power systems, Introduction &	Hours)
	Principles of transmission	pricing. Differenttransmission pricingmethods. Transmission	
	cost allocation methods.	Marginal & Composite pricing Paradigms & their comparison.	
	Introduction to transmiss	ion loss allocation & various methods of loss allocation. Debated	
	issues in transmission pric	ring Congestion issues and management Ancillary Service	
	Management Forward ar	cillary service auction. Power nurchase agreements	
	management, rorward ar	initial y service duction. I ower parentase agreements.	
Reference	Books:		
1 Loile	i Lai 'Power System Restru	cturing & Deregulation, John Wiley & Sons Ltd	
2 "Know	v Your Power" A citizens Pr	imer On the Electricity Sector Prayas Energy Group Pune	
3 Sally F	Junt "Making Competition	Work in Electricity" 2002 John Wiley Inc	
4 Electri	ic Litility Planning and Regu	lation Edward Kahn American Council for Energy Efficient Econor	nv
5 D S K	irschen& G. Strhac 'Fundar	nentals of Power System Economics' John Wiley & Sons Itd	
6 Stever	n Stoft 'Power System Fcon	omic Designing markets for Electricity. Wiley-Inter Science	
7 M Sh	abidenour Hatim Vamin	7. 7 July 11 Market Operations in Electrical Power Systems For	ecasting
Sched	uling and Risk Managemen	t' Wiley Inter Science	seasting,
Jenea	uning and hisk management		
References	s:		
1. Regula	tion in infrastructure Servic	ces: Progress and the way forward - TERL 2001	
2. Mahar	ashtra Electricity Regulator	v Commission Regulations and Orders - www.mercindia.com	
3 Variou	s publications reports and	presentations by Prayas Energy Group Pune www.prayaspune.or	σ
4 Centra	l Electricity Regulatory Com	mission Regulations and Orders - www.cercind.org	4
5 Electric	rity Act 2003 and National I	Policies – www.nowermin.nic.in	
6 Marke	t Operations in Electric Poy	wer Systems Forecasting Scheduling and Risk Management –Mo	hammad
Shader	nur HatimYatim Zuvili		lannaa
7 Bhanu	Bhushan "ABC of ABT - A n	rimer on Availability Tariff" - www.cercind.org	
7. Dhana			
Website: N	IDTFI - Phase II-		
Website. I			
Syllabus fo	or Unit Test:		
Unit Test -:	1	UNIT – I, UNIT – II, UNIT – III	
Unit Test -2	2	UNIT – IV, UNIT – V, UNIT – VI	

	(Elect	ve – I)POWER SYSTEM PLANNING AND RELIA	BILITY	
TEACHING	SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTE	D:
Theory: 0	4 Hours / Week	End Semester Examination: 60 Marks	03 Credits	
Practical: ()2 Hours / Week	Continuous Assessment: 40 Marks		
		Term Work: 25 Marks	01 Credit	
	1			
UNIT - I	Unit 1: Load Forecas	ting :		(06
		.		Hours)
	Introduction, Facto	rs affecting Load Forecasting, Load Rese	arch, Load Growth	
	Characteristics, Class	ification of Load and Its Characteristics, Load	Forecasting Methods	
	-(I) Extrapolation (II) Co-Relation rechniques, Energy Forecasting, Peak Load			
	Forecasting, Reactive Load Forecasting, Non-Weather sensitive load Forecasting,			
	Ecrocosting Objective	odu Forecasting, Annual Forecasting, Month	Ty Forecasting, Total	
	Medium Term Plann	ing Long Term Planning [10 hrs]	Short Territ Flamming,	
	Linit 2. Probability t			(06
				Hours)
	Introduction to prol	pability. Probability distributions : Random y	ariables, density and	noursy
	distribution functio	ns. Mathematical expectation. Binominal	distribution. Poisson	
	distribution. normal	distribution. exponential distribution. Weibul	distribution. Normal	
	Gaussian, Gamma ar	d Beta distribution. Correlation and regressio	n	
UNIT - III	Unit 3: Reliability			(06
				Hours)
	Reliability, Failure, Co	oncepts of Probability, Evaluation Techniques	(i) Markov Process (ii)	
	Recursive Technique	, Stochastic Prediction of Frequency and Dura	ation of Long & Short	
	Interruption, Adequa	acy of Reliability, Reliability Cost.		
UNIT - IV	Unit 4: Generation P	lanning and Reliability :		
	Objectives & Factors	affecting Generation Planning, Generation So	urces, Integrated	
	Resource Planning, G	eneration System Model, Loss of Load (Calcul	ation and	
	Approaches), Outage	Rate, Capacity Expansion, Scheduled Outage,	Loss of Energy,	
	Evaluation Methods.	Interconnected System, Factors affecting inte	rconnection under	
	Emergency Assistance	e.		
UNIT - V	Unit 5: Transmission	Planning and Reliability		(06
	Tana ang ing ing Diang in	er and Daliability a later dusting. Objectives of T		Hours)
	I ransmission Plannir	ig and Reliability: Introduction, Objectives of I	ransmission	
	Composite System P	econinguration, system and Load Point malces	Data required for	
	Unit 6: Distribution	Planning and Polishility		(06
UNIT - VI				Hours
	Radial Networks –	Introduction Network Reconfiguration Ev	aluation Techniques	noursj
	Interruption Indices	Effects of Lateral Distribution Protection, Eff	fects of Disconnects	
	Effects of Protectio	n Failure. Effects of Transferring Loads. D	istribution Reliability	
	Indices. Parallel & N	Aeshed Networks -Introduction, Basic Evalua	tion Techniques, Bus	
	Bar Failure, Schedule	d Maintenance, Temporary and Transient Fail	ure, Weather Effects,	
	Breaker Failure.	· · ·		

Text Books	5:		
1.	Roy Billinton& Ronald	N. Allan, Reliability Evaluation of Power System - Springer Publication.	
2.	R.L. SullivanPower Syst	em Planning -, Tata McGraw Hill Publishing Company Ltd.	
3.	Miler& Freund's, Proba	bility and Statistic for Engineers, Pearson Education, Richard Johnson.	
Reference	Books:		
1.	X. Wang & J.R. McDona	ald, Modern Power System Planning –, McGraw Hill Book Company	
2.	T. Gönen, Electrical Po	wer Distribution Engineering - McGraw Hill Book Company	
3.	B.R. Gupta Generation of Electrical Energy –, S. Chand Publications		
4.	A.S. Pabla, Electrical Power Distribution Tata McGraw Hill Publishing Company Ltd.		
5.	T.W.Berrie, Electricity E	Economics & Planning –, Peter Peregrinus Ltd., London	
Syllabus fo	or Unit Test:		
Unit Test -:	1	UNIT – I, UNIT – II, UNIT - III	
Unit Test -2	2	UNIT – IV, UNIT – V, UNIT - VI	

Power Quality Issues

TEACHING	SCHEME:	EXAMINATION SCHEME:	CREDITS ALLOTTEE	<u>D:</u>	
Theory: 0	4 Hours / Week	End Semester Examination: 60 Marks	04 Credits		
		Continuous Assessment: 40 Marks			
UNIT - I	Voltage sag; swells	and interruptions	nower quality as per	[8Hrs]	
	IFFF std 1159 Sour	ces & Effects of Power Quality Problems: Sour	res of sage swell and		
	interruptions: Estin	nation of voltage sag performance: Fundan	nental principles of		
	protection; solution	s at end user level; utility systems and fault cl	earing issues; motor		
	starting sags; evalua	tion of the economics of different alternatives.	0		
UNIT - II	Transient Over- Vol	ages		[8Hrs]	
	Sources of transient	over voltages; capacitor switching; lightening; F	erro resonances and		
	other switching tran	sients; Principles of over voltage protections; de	evices of over		
	voltage protections;	Utility capacitor switching transients; Utility sys	tem lightening		
	protection; managin	g Ferro resonance; switching transients problen	ns with loads;		
	computer tools for t	ransient analysis.			
UNIT - III	Fundamentals of H	armonics and its Analysis		[8Hrs]	
	Introduction; the N	Aechanism of Harmonic Generation; Definiti	ons and Standards:		
	Factors Influencing the Development of Standards, Existing Harmonic Standards,				
	General Harmonic Indices.				
	Resulting from Waveform Symmetry: Complex Form of the Fourier Series: Convolution				
	of Harmonic Phasors: The Fourier Transform: Sampled Time Functions: Discrete Fourier				
	Transform (DFT): The Nyquist Frequency and Aliasing: Fast Fourier Transform (FFT):				
	Window Functions; Efficiency of FFT Algorithms; Alternative Transforms.				
	, , , , , , , , , , , , , , , , , , ,	, , ,			
UNIT - IV	Harmonic Sources a	nd Distortions		[8Hrs]	
	Harmonic Sources :	Introduction: Transformer Magnetization Nor	nlinearities: Rotating		
	Machine Harmonics	; Distortion Caused by Arcing Devices; Single	-Phase Rectification;		
	Three-Phase Curre	nt-Source Conversion; Three-Phase Voltage-	Source Conversion;		
	Thyristors-Controlle	d Reactors.			
	Harmonic Distortion	n : Introduction; Resonances; Effects of Har	monics on Rotating		
	Machines; Effect of	Harmonics on Static Power Plant; Harmonic Inte	rference with Power		
	System Protection;	Effect of Harmonics on Consumer Equipmen	t; Interference with		
	Communications.				
				•	
UNIT - V	Computation, Asses	sment and Harmonic Elimination		[8Hrs]	
	Harmonic Computat	ion : introduction; Direct Harmonic Analysis; D	erivation of Network		
	Submarine Cables I	and Models: Computer Implementation: Evant	s, oncerground and		
	the Models.	out models, computer implementation, Examp			
	Harmonic Fliminatio	n : Introduction: Filter Design Criteria: Network	Impedance for		
	Performance Calcula	tions; Tuned Filters; Damped Filters; Conventio	nal Filter		

	Configurations; Band-Pass Filtering for Twelve-Pulse Converters; Distribution System				
	Filter Planning; Filter Co	omponent Properties; D.C. Side Filters; Active Filter			
UNIT - VI Power quality monitor		ing; Assessment & Mitigation	[8Hrs]		
	Need and approacher requirements; Initial s quality monitors; mon monitoring; Transient r	es followed in power quality monitoring; objectives and ite survey; Power quality Instrumentation; Selection of power itoring location and period; Selection of transducers; Harmonic nonitoring; event recording and flicker monitoring.			
	Power Quality assess waveform distortion; waveform distortion co observability analysis; Mitigation techniques a	ment; Power quality indices and standards for assessment; voltage and current unbalances; Power assessment under onditions. Power quality state estimation; State variable model; capabilities of harmonic state estimation; Test systems; at different environments.			
Reference	25:				
1. U	nderstanding power qual	lity problems; voltage sag and interruptions - M. H. J. Bollen IEE	E press;		
20	JOU; series on power engi	neering.			
2. "F	OWER SYSTEM HARMON	NICS", Second Edition By Jos Arrillaga and Neville R. Watson; Jon	n wiley		
ar C	and Publication, 2003 ISBN: 0-470-85129-5.				
3. EI Ba	Iectrical power system quality - Pogel C. Dugan; Mark F. McGranghan; Surya santoso; H. Wayne				
	ower system quality asses	sment - L Arrillaga: M.R. Watson: S. Chan: John Wiley and sons			
5. Fl	ectric power quality - G. I	Hevdt			
6. Pc	ower system harmonics:	Computer modeling and analysis- Enriques Acha: Manuel Madrig	al: John		
w	iley and sons ltd.		,		
7. Pc	, ower System Harmonics –	J. Arrillaga & N. Watson			
8. IE	EE std 519-1992/ IEEE s	td 1159 IEEE recommended practices and requirements for ha	rmonics		
СС	ontrol in electrical powers	system.			
9. E	CBC Code 2007 (Editi	on 2008) published by Bureau of Energy Efficiency: New	/ Delhi		
B	ureau of Energy Effic	iency Publications Rating System: TERL PUBLICATIONS	GRIHA		
P	ating System I FEDS D	Publications	Gran //		
		ubileations			
Syllabus f	or Unit Test:				
Unit Test	-1	UNIT – I. UNIT – II. UNIT – III			
Unit Test	-2	UNIT - IV, UNIT - V, UNIT - VI			
		. ,			

(Elective – II) Advanced Control System					
TEACHING SCHEME:		EXAMINATION SCHEME:	CREDITS AL	LOTTED:	
Theory: 04 Hours / Week		End Semester Examination: 60 Marks	03 Credits		
		Continuous Assessment: 40 Marks			
	1				
UNIT - I	PID Control	:		(08 Hours)	
	Review of c	lassical and modern control concepts: PID control and			
	tuning approaches, Selection of Variables for Control, PID Controller				
	Tuning for Dynamic Performance - Determining Tuning Constants for				
	Good Control Performance, Ziegler-Nichols method, Correlations for				
	Tuning Constants, Fine-Tuning the Controller Tuning Constants, Controller tuning based on stability Deed best and self tuning Rete				
	feedback	ing based on stability – Dead beat and st	tuning, Rate		
UNIT - II	State Variable Analysis:		(08 Hours)		
	Control Syste	m Analysis Using State Variable Methods	Conversion of	(00 110015)	
	transfer funct	ion to phase variable and canonical variable	le model Eigen		
	value and eigen vector Kalman's test and Gilbert's Test for				
	controllability and observability analysis and design of control system in				
	state space, H	Pole placement, State observer, Design of	control system		
	with Luenber	ger observer			
UNIT - III	Nonlinear and Robust Control:		(08 Hours)		
	Nonlinear Sy	stems and Equilibrium Points, Concept	s of Stability,		
	Describing f	unction analysis, Phase plane analysis,	Linearization,		
	Feedback Linearization, Input-output linearization, Input-State				
	Concept of r	obust control Description and categoriza	tion of system		
	uncertainties System and signal norms. Small gain theorem, Robust				
	stability, Desi	gn of robust control, Introduction to $H-\infty$ co	ontrol.		
UNIT - IV	Digital Cont	rol:		(08 Hours)	
	Structure of	the Digital Control System, ADC, DA	AC, Effects of		
	Sampling of	continuous time signals, Quantization, Sa	mple and hold,		
	Reconstructio	n of signal, Sampling Theorem, Aliasin	ng, Elementary		
	discrete-time	signais, Impulse response, Linear conve	olution and its		
	properties, Z	and partial fraction difference equation S_{1}^{1}	talisionin using		
	in z- plane wi	th Jury's stability criteria	autry analysis		
	- F			(00 11)	
UNII - V	Frequency A	naiysis:		(Vð Hours)	

	Frequency response of first order and second order systems, Polar plot, Bode plot, Bode plot from Sweep Frequency Response Analysis (SFRA) of transformer and its conclusion, Phase and group delays, Ideal filters and their pole zero locations, Zero phase and linear phase transfer functions Exponential representation of Fourier series and Fourier transform of			
	continuous time s signals (only conc signals (only conc Periodicity, Line Linear convolutio	ignals, The Fourier series for discrete-Time periodic ept), The Fourier transform of discrete-time a periodic oncept), Discrete Fourier Transform, Properties: arity, Symmetry properties, Circular convolution, n using circular convolution, Fast Fourier Transform:		
	Radix 2 DIT and I	DIF algorithms		
UNIT - VI	Optimal Control		(08 hours)	
	Parameter optimi formulation of o Linear regulator p solution of Matri Application to o (quadratic perform time), Linear Qua	zation and optimal control problems, Hamiltonian ptimal control problem, Hamilton-Jacoby equation, problem, Quadratic performance criterion, Numerical & Riccati equation, Pontryagin's minimum principle, ptimal control of discrete and continuous systems nance index, analysis and design of finite and infinite adratic Regulators, Introduction to Linear Quadratic		
	Gaussian approach	1		
Toyt Books:				
1 "Modern Control Engineering", Katsubiko Ogata, Prentice Hall India, 5th edition 2010				
2. 'Non-linear Systems' by Hassan Khalil Prentice Hall				
3. Digital Control – Ogata , Prentice Hall India				
Reference Books:				
1. Digtal Control- B.C.Kuo				
2. 'Digital Control and State Variable Methods' by M. Gopal, Tata-McGraw-Hill Publishing Company Limited				
3. Optimal Control: Linear Quadratic Methods' Brian D. O. Anderson, John Barratt Moore, Dover Publications, 2007				
Syllabus for Unit Test:				
Unit Test -1		UNIT - I, UNIT - II, UNIT - III		
Unit Test -2		UNIT - IV, $UNIT - V$, $UNIT - VI$		

(Elective – II) ADVANCED POWER ELECTRONICS AND DRIVES					
TEACHING SCHEME:		EXAMINATION SCHEME:	CREDITS ALL	OTTED:	
Theory: 04 Hours / Week		End Semester Examination: 60 Marks	04 Credits		
Practical: 02 Hours / Week		Continuous Assessment: 40 Marks			
		Term Work: 25 Marks	01 Credit		
UNIT - I	Converters:			(08 Hours)	
	Voltage Source Conve	rters			
	Review of 3-ph-full wave bridge converter, operation and harmonics, 3 level				
	voltage source converters. PWM converter. Generalized technique of harmonic				
	elimination and voltage control. Advanced modulation techniques (space vector				
	modulation, 3 rd harmonic PWM) Comparison of PWM techniques. Converter rating				
	Lurrent source converters				
	(i) Matrix Converter: 3×3 matrix converter, principle of working, mathematical treatment comparison of matrix converter with multipulse converter				
	(ii) Self and Line commutated current source converter. Basic concepts of CSC				
	converters with self co	mmutating devices			
UNIT - II	Multilevel Inverters:			(08 Hours)	
	Multilevel concept,	Types of multilevel Inverters, diode clam	ped multilevel		
	inverter, flying-capacitors multilevel inverters, cascaded multilevel inverter,				
	switching device currents, D.C. link capacitor voltage balancing, features of				
	multilevel inverters, comparison of multilevel inverters. Applications of multilevel				
	Inverter: Reactive pow	er compensation Back to back intertie system	ו		
UNIT - III	DC Drives:				
	Single phase and 3 phase converter drives. Four quadrant Chopper drives, closed				
	loop control of DC motor, Permanent magnet DC motor drives, DC Servo drives,				
	applications				
UNIT - IV	Induction Motor Drives:			(08 Hours)	
	3 phase induction motor control, stator voltage control/rotor voltage control,				
	voltage and frequency control, current control, closed loop control of 3-phase				
	induction motor. Soft starters, comparison of variable frequency drives, Speed				
	control by static slip po	ower recovery, induction motor servo drives,	applications.		
UNIT - V	Synchronous Motor Drives:		(08 Hours)		
	Voltage and frequency	control, closed loop control of synchronous	motors.		
	Synchronous motor servo drive with sinusoidal waveform, synchronous motor				
	servodrive with trapez	oidal waveform. Load commutated invertor c	lrives, speed		
	control of synchronous	s motors by cyclo-convertors, applications			
UNIT - VI	Akagi's p-q theory			(08 Hours)	
	Conventional concepts	of active and reactive power in single phase	and three		
	phase circuits-Equation	n of power with sinusoidal voltage source and	l non-linear		
	loads -αβo transforma	tion of three phase four wire system-Akagi's i	instantaneous		
	power (pq) theory-rela	itionship between Akagi's components and co	onventional		
	active and reactive pow	wer application of pg theory to reactive and h	armonic power		
	compensation in simpl	e circuits.			

Text Books:			
1. Bimal K Bose, Modern power e	Bimal K Bose, Modern power electronics and AC drives, Pearson education asia		
2. G. K. Dubey, Fundamentals of	G. K. Dubey, Fundamentals of Electrical Drives CRC press 2002		
3. VedamSubrahmanyam Electric	. VedamSubrahmanyam Electric Drives: Concepts & Appl Tata McGraw-Hill		
4. Power electronics convertors	Power electronics convertors, applications and design, Ned Mohan, Tore M Undeland, William P		
Robbins, Wiley India Pvt. Ltd.,	Robbins, Wiley India Pvt. Ltd., 2009		
5 E. Acha, Miller & Others, Pow	5 E. Acha, Miller & Others, Power Electronic Control in Electrical Systems (Newnes, Oxford publication) –		
first Edition			
6 M. H. Rashid Power Electronics	6 M. H. Rashid Power Electronics, Prentice Hall of India Pvt. Ltd. New Delhi, (3rd Edition)		
7. R Krishnan, Electric motor drive	7. R Krishnan, Electric motor drives, modeling, analysis and control, PHI learning Pvt. ltd. 2001		
8. S.K. Pillai, A first course in elect	trical drives, Newage international publishers. 2010		
Reference Books and Papers:			
1. E. H. Watanube, R.M. Ste	ephen and Maurico Ardes "New Concepts of instantaneous active and		
reactive powers in Electric	reactive powers in Electrical systems with Generic loads" (IEEE transaction on Power Delivery Vol.8,		
no.2 April 1993, PP-697-70	no.2 April 1993, PP-697-703		
2. L. Benchaita, S. Sadaate and A. Salemnia – "A comparison of voltage source and current source shunt			
Active filter by simulation	Active filter by simulation and Experimentation" (IEEE Transaction on Power Systems, Vol 14, No.2,		
May 99, PP 642-647			
3. H. Akagi, E.H. Watanabe and M. Aredes "Instantaneous Power Theory and Applications to Power			
Conditioning, IEEE Press, N	ew York		
Syllabus for Unit Test:			
Unit Test -1	UNIT – I, UNIT – II, UNIT - III		
Unit Test -2	UNIT – IV, UNIT – V, UNIT - VI		