Bharati Vidyapeeth (Deemed to be University) College of Engineering, Pune Department of Chemical Engineering <u>B. Tech. Chemical Curriculum- 2021</u> Bharati Vidyapeeth

(Deemed to be University) Faculty of Engineering and Technology Programme: B. Tech. (Chemical) (2021 Course) Curriculum Structure (Semester I and II)

BharatiVidyapeeth (Deemed to be University) Faculty of Engineering and Technology

Program: B.Tech. (Chemical)

Semester – I

CBCS 2021 Course

Sr	Course	Name of Course	Teaching Scheme (Hours/week)		Examination Scheme (Marks)					Credits					
No.	Code		L	Р	Т	UE	IA	TW	TW& OR	TW& PR	Total	L	P TW/OR/PR	Т	Total
1		Algebra and Statistics	4	-	1	60	40	_	-		100	4	-	1	5
2		Organic Chemistry- I	4	2	-	60	40	25	-	25	150	4	1	-	5
3		Material and Wave Physics	4	2	-	60	40	25	-	25	150	4	1	-	5
4		Computer Aided Graphics	3	4	-	60	40	25	25	-	150	3	2	-	5
5		Chemical Engineering (Scope and Significance)	3	-	-	60	40	-	-	-	100	3	-	-	3
6		Data Structure (C Programming)	-	4	-	-	-	50	50	-	100	-	2	-	2
Total			18	12	1	300	200	125	75	50	750	18	6	1	25

Program: B.Tech. (Chemical)

Semester – II

II CBCS 2021 Course

Sr. No.	Course	Name of Course	Teaching Scheme (Hours/week)			Examination Scheme (Marks)					Credits				
	Code		L	Р	Т	UE	IA	TW	TW &	TW &	Total	L	Р	Т	Total
									UK	ΓK			TW/OR/PR		
1		Differential and Integral Calculus	4	-	1	60	40	-	-		100	4	-	1	5
2		Organic Chemistry- II	4	2	-	60	40	25	-	25	150	4	1	-	5
3		Inorganic Chemistry	3	2	-	60	40	25	-	25	150	3	1	-	4
4		Biological Science	3	4	-	60	40	25	25	-	150	3	2	-	5
5		Material and Energy Balance	4			60	40				100	4			4
5		Calculations	+	-	-	00	40	-	-	-	100	+	-	-	+
6		Java Programming	-	4	-	_	_	50	50	-	100	-	2	-	2
Total			18	12	1	300	200	125	75	50	750	18	6	1	25

Bharati Vidyapeeth

(Deemed to be University) Faculty of Engineering and Technology Programme: B. Tech. (Chemical) (2021 Course) Syllabi of Semester I to Semester II Courses

Programme: B. Tech Chemical (2021) Sem –I (Chemical)

ALGEBRA AND STATISTICS							
Designation: Mathematics							
Pre-requisit	te Courses: Basic know	owledge of mathematics					
Teaching Se	cheme	Examination Scheme		Credits Allo	tted		
Lectures	: 04 Hours/Week	End Semester Examination	: 60 Marks	Theory	: 04		
Tutorial	: 01 Hours/Week	Continuous Assessment	: 40 Marks	Tutorial	: 01		
Total	: 05 Hours/Week	Total	: 100 Marks	Total Credits	: 05		
		Topics Covered					
UNIT-I	Matrices				(08Hours)		
	Determinant, Adjoi	nt, Rank, Inverse of matrix	, Normal form	n, System of			
	linear equations,	Linear dependence and in	ndependence,	Linear and			
	Orthogonal transformations. Eigen Values, Eigen Vectors, Cayley -						
	Hamilton Theorem, Application to problems in Engineering.						
UNIT-II	Complex Numbers	and Applications			(08Hours)		
	Definition, Cartes	sian, Polar and Exponen	itial forms,	Geometrical			
	representation of im	aginary and complex number	s, De' Moivre's	theorem and			
	its application to f	ind roots of algebraic equation	ons., Hyperbol	ic functions,			
	Logarithm of comp	blex numbers, Separation into	Real and Ima	ginary parts,			
	Application to prob	lems in Engineering.			(0011		
UNIT-III	Statistics			6 (1	(08Hours)		
	Collection of data,	Graphical representation of	data, Measul	e of central			
	deviation Complete	tion and coefficient of	nt of variation	on, Standard			
	actimates Deple cor	relation	orrelation, Sta	indard error			
	Statistical test : t test	$E test r^2 test$					
	Data fitting: Linear	Multilinear and nonlinear reg	ression				
IINIT_IV	Probability	Withinical and nonlinear reg	10331011		(08Hours)		
	Laws of probability	and notations. Random varial	ole. Probability	distribution-	(00110015)		
	normal Pinomial I	Doison Waihull Interpretation	of failura data	Equal likely			
	head and Destant	olson welden, merpietation	vian Jaint -	Equal likely			
	nood and Boolear	algebra, Probability of u	mon, Joint a	nu marginal			
	probability, Conditi	onal probability, and Distribut	ion function.				

UNI	T-V	Vector Algebra and Calculus	(08Hours)				
		Vector, Space coordinates and mathematical operations, Physical					
		applications, Differentiation of vectors, Identities involving gradient					
	divergence curl and their physical meaning, Line and surface integral						
		Green, Guass and Stoke's theorem.					
UNI	T-VI	Solid Geometry	(08 Hours)				
		Equation of line, Equation of plane, Conditions for line on plane, Coplanar					
		lines, Intersection of three planes, Equation of sphere, Cone, Cylinder,					
		Quadric surface, Surface of revolution, Combination of surfaces.					
D •	(D	1					
Proj	ect Bas	ed Learning					
1.	Find th	he Eigen values and Eigen vectors of any random matrix.					
2.	Check	the consistency of algebraic equations.					
3. 1	Find ro	ools of any algebraic equation.					
4.	Collec	ate into Real and infaginary parts of complex numbers					
5.	Find th	he stability of the data using coefficient of variation					
0. 7	Use concern of correlation to find coefficient of correlation between different observation						
8	Use R:	Use Rank correlation to find correlation for qualitative data					
9.	Derive	Derive Spearman's Rank correlation					
10.	Data fi	itting using linear regression.					
11.	Data fi	itting using nonlinear regression.					
12.	Find w	vork done using vector integral.					
Text	Books/	/References					
1	P. N. V	Wartikar and J. N. Wartikar, Applied Mathematics (Volumes I and II), 7 th Ed., Pu	ine Vidyarthi				
	Griha	Prakashan, Pune, 2013.					
2	B. S. C	Grewal, Higher Engineering Mathematics, 42 nd Ed., Khanna Publication, Delhi, 20	017.				
3	B.V. R	Ramana, Higher Engineering Mathematics, 6 th Ed., Tata McGraw-Hill, New Delhi	i, 2008.				
4	E. Kreyszig, Advanced Engineering Mathematics, 10 th Ed., John Wiley & Sons, Inc., 2015.						
5	P. V. O'Neil Advanced Engineering Mathematics, 7 th Ed., Cengage Learning, 2012.						
6	M. Greenberg Advanced Engineering Mathematics, 2 nd Ed., Pearson Education, 1998.						
Sylla	abus for	r Unit Tests					
Unit	Test I	Units I, II, and III					
Unit	Test II	Units IV, V, and VI					

ORGANIC CHEMISTRY - I

Designation: Basic Science

Pre-requisite Courses: Basic knowledge of Chemistry, Stereoisomerism, Reactive intermediates.

Teaching	Scheme	Examination Scheme		Credits Al	lotted					
Lectures	: 04 Hours/Week	End Semester Examination	: 60 Marks	Theory	: 04					
Practical	: 02 Hours/Week	Continuous Assessment	: 40 Marks	Tutorial	: -					
Total	: 06 Hours/Week	Term-work (TW)	: 25 Marks	Practical	: 01					
		Practical/Oral	: 25 Marks	Total Cred	its : 05					
		Total	: 150 Marks							
		•		•						
Course O	utcomes									
1	Understand the concept	of generation, stability of inte	ermediates and	mechanisms	of various					
	named reactions.									
2	Illustrate the principles	of stereochemistry and study t	the skills for ste	ereochemica	l assignment					
	related to cycloalkane				C					
3	Explain and illustrate th	e knowledge about the synthe	sis of alkanes,	alkenes and	alkynes					
	with its chemical reaction	ons			-					
4	Explain and illustrate th	e knowledge about the synthe	sis of Haloalka	nes and alco	hols with its					
	chemical reactions.									
5	Understand and apply the	ne knowledge about preparation	on reactions of	Aldehydes, l	ketones and					
	Phenols and their chemi	cal reactions.								
6	Understand importance	of synthesis reactions for Carl	boxylic acids a	nd derivative	es and their					
	chemical reactions.									
		Topics Covered								
UNIT-I	Structural effects and F	Reactive intermediates			(06 Hours)					
	Electron Displacement	:- Effects-Inductive, Electro	omeric, Meso	meric and						
	Hyperconjugative effect	ts.								
	Reactive intermediates	s – Carbocations and Carba	nions							
	Introduction, Classifica	ation of carbocations, Prep	aration of ca	rbocations,						
	Reactions of carbo	cations, Carbocations stal	bilisation, In	troduction,						
	Classification of carb	oanions, Preparation of car	rboanions, Re	actions of						
	carboanions, Carboanio	ons stabilization, Kinetic and	thermodynami	c controls,						
	Effect of solvent, tempe	rature.								
UNIT-II	Stereoisomerism				(06 Hours)					
	Optical isomers with tw	vo chiral centres [A, A and A	A, B type], eryt	thro, threo,						
	meso, diastereomers, St	ereo isomers in cycloalkanes	– Baeyer's str	ain theory,						
	heats of combustion and	l relative stability of cycloalka	anes, Factors af	fecting the						
	stability of conformatio	n, Conformations of cyclohex	xane, equatoria	l and axial						
	bonds in cyclohexane. N	Aono substituted cyclohexane	S							
UNIT-III	Chemistry of alkanes,	alkenes and alkynes	0 11 -		(06 Hours)					
	Introduction, Classifica	ation, Physical properties of	ot alkanes, al	kenes and						
1	alkynes .Preparation of	alkanes from hydrogenation	ot alkenes an	d alkynes.						

	Wurtz Reaction, Reactions of alkanes - and Halogenation, Preparation of						
	alkenes from alkyl halides and alcohols. Reactions of alkenes - Electrophilic						
	additions their mechanisms (Markownikoff/Anti-Markownikoff addition).						
	oxymercuration-demercuration Preparation of alkynes - calcium carbide						
	vicinal dihalides Reactions of alkynes - Electrophilic and Nucleophilic						
	additions						
UNIT-IV	Haloalkanes, alcohols	(06 Hours)					
	Introduction Classification Nomenclature of alkyl halides Preparation of	(00 110015)					
	alkyl halides from alkanes and by addition of HX to alkenes, Reactions of						
	alkyl halides- Substitution and Elimination reactions. Introduction						
	Classification Nomenclature of alcohols						
	Preparation of alcohols- Hydrolysis of alkyl halides and Reduction of						
	aldebydes and ketones Reactions of alcohols- Hydrogen balides and						
	Dehydration of Alcohols						
LINIT-V	Aldebydes ketones and Phonels	(06 Hours)					
0111-1	Structure of carbonyl group. Nomenclature of aldehydes and ketones and	(00 110015)					
	physical properties. Preparation of aldebydes from primary alcohols and						
	mathyl hanzanas. Proparation of katonas from secondary alashels and friedel						
	areft equation. Departions of aldebudge and ketones. Aldel condensation						
	raduction, Clammonson's Connizaro's reaction. Propagation of phonols from						
	laboratory method. Deactions of phanols. Nitration and Sulphonation						
	Concerning and derivatives						
UNII-VI	Carboxylic acids and derivatives						
	Structure, classification, Nomenciature and physical properties, Preparation of						
	carboxylic acids from primary alcohols and oxidation alkyl benzene, Reactions						
	of carboxylic acids – acidity, salt formation, Acid derivatives – Structure and						
	Nomenclature, Preparations and properties of acid chlorides.						
Project ba	sed learning						
Pre	epare and give the composition and role of ingredients in dry hand santizer.						
• Pre	pare a safe way to make fruit vinegar at nome.	and and					
	armaceutical industries and get it published in reputed journal (e.g. Google Scholar	r					
• Wi	ith the help of extraction from cinnamon/discharge essential oil. How to present at	nd introduce					
cin	namon/lemongrass essential oil products?						
• Pre	epare a hardware model based on a simple automatic handwashing device.						
• W1	rite a review paper based on organic compounds are used as explosives in practice	and get it					
pu	blished in reputed journal (eg. Google Scholar).						
*Students i	n a group of 3 to 4 shall complete any one project from the above list.						
Term worl	K						
Term work	will consist of the experiments listed below, which are to be performed in laborat	ory by the					
students							
1	Purification of organic compounds by crystallization using the following solvent	s:					
	1. Water						
	2. Alcohol						
	3. Alcohol-Water						
2	Effect of impurities on the melting point – mixed melting point of two unknown	organic					
	compounds.						
3	Determination of boiling point of liquid compounds. (boiling point lower than an	nd more than					

	100 °C by distillation and capillary method)							
Text Book	Text Books/References:							
1	R. Macy, Organic Chemistry Simplified, 2 nd Ed., Chemical Publishing Company, New York							
	1995.							
2	J. J. Li, C.Limberakis, D. A. Pflum, Modern Organic Synthesis, Oxford University Press,							
	New York, 2007.							
3	J. Clayden, Organic Chemistry, Oxford University Press, New York, 2000.							
4	R. T. Morrison, R. N. Boyd, Organic Chemistry, 6 th Ed., Pearsons Publications, New York,							
	1992.							
5	B. S. Furniss, A. J. Hannaford, P.W. G. Smith, A. R. Tatchell, Vogel's Textbook of Practical							
	Organic Chemistry, 5 th Ed., Longman Scientific & Technical, Harlow 2001.							
Syllabus fo	Syllabus for Unit Tests							
Unit Test I	Units I, II, and III							
Unit Test I	Units IV, V, and VI							

MATERIAL AND WAVE PHYSICS

Designation: Basic Science

Pre-requisite Courses: Students are expected to have a basic understanding of physics and calculus.

Teaching Sc	heme	Examination Scheme	Credits Allotted		
Lectures	: 04 Hours/Week	End Semester Examination	: 60 Marks	Theory : 04	
Practical	: 02 Hours/Week	Internal Assessment	: 40 Marks	TW/OR/PR : 01	
Total	: 06 Hours/Week	Term-work (TW)	: 25 Marks	Total Credits : 05	
		Practical/Oral	: 25 Marks		
		Total	: 150 Marks		

Course Objective: To impart knowledge of basic concepts in physics relevant to engineering applications in a broader sense with a view to lay foundation for the Chemical Engineering.

Course Outcomes

1 Appraise the atomic spectra of one and two valance electron atoms and the change in behavior an external applied electric and magnetic field.

2 Solve quantum physics problems to micro level phenomena and solid state physics.

3 Summarise the arrangement of atoms in solids and its influence the properties of matter.

4 Use the knowledge of nanoscience to develop new materials with tunable properties.

5 Connect the problems associated with defects and use ultrasonic as a tool in industry form on destructive testing.

6 Infer the wave nature of light and apply it to measure stress, pressure and dimension etc.

Topics Covered								
UNIT-I	Atomic and Molecular Physics	(08 Hours)						
	Inroduction - JJ Thomson and Bohr, Sommerfeld and Vector Models, Origin							
	of quantum numbers, Vector model for two valance electrons atom, LS and JJ							
	coupling, origin of spectra (Electronic, atomic and molecular), Stark effect.							
UNIT-II	Quantum Mechanics	(08 Hours)						
	Dual nature of matter, concept of wave packet, group and phase velocity and relation between them, Physical significance of wave function, Schrodinger's time dependant and time independent wave equation, Application of Schrodinger's time independent wave equation to the problems of Particle in a rigid box, step potential and potential barrier (analytical discussion), tunnelling effect.							
UNIT-III	Crystallography Introduction-Lattice, basis, Unit cell and Bravais lattice, cubic system, lattice planes and Miller indices, packing factor, inter planar distances, Bragg's law (Statement only), Origin of Line and Continuous Spectrum of X-ray, Mosley's law, Crystal defects (1.Point defects vacancies, interstitial defects, substitution defects, 2. Line defect-screw dislocation, edge dislocation, 3 surface defects-material surface grain boundaries)	(08 Hours)						
UNIT-IV	Nanoscience	(08 Hours)						
	Introductions of nanoparticals, properties of nanoparticals (Optical, electrical,	(00 110015)						

		Magnetic, structural, mechanical), synthesis of nanoparticals (Physicaland		
		chemical), synthesis of colloids, growth of nanoparticals, synthesis of		
		nanoparticals by colloidal route, applications, quantum dots – wide band		
		semiconductors, direct/indirect band gap semiconductors		
UNI	UNIT-V Ultrasonics			
		Introduction to ultrasonics, Production of ultrasonics by magnetostriction and		
		piezoelectric methods - acoustic grating –Non Destructive Testing – pulse		
		echo system through transmission and reflection modes - A, B and C-scan		
		displays, Medical applications – Sonogram, emulsification, cavitation,		
TINIT	тлл	Waya Ontiga Interference	(00 II	
UNI	1-V1	Interference of waves interference due to thin film (Uniform and non		
		uniform) Applications of interference (optical flatness interference filter		
		non-reflecting coatings		
		Diffraction		
		Introduction Classes of diffraction Diffraction at a single slit (Geometrical		
		method). Conditions for maximum and minimum. Plane diffraction grating		
		Conditions for principal maxima andminima		
		Polarisation		
		Introduction, Double refraction and Huygen'stheory, Positive and negative		
		crystals, Nicol prism, Dichroism.		
Terr	n Work	C C C C C C C C C C C C C C C C C C C		
Tern	n work v	will consist of the experiments listed below, which are to be performed in labor	ratory by the	
stude	ents. (Ai	ny Eight of the Following)		
1	Detern	nination of Planck's Constant by photo electric effect		
2	To stu	dy Hall effect and determine the Hall voltage		
3	Calcul	ation of conductivity by four probe method		
4	Synthe	esis of metal oxide nanoparticles (ZnO/ZnS/Gold)		
5	UV-V	IS spectra of synthesised semiconductor nanoparticles		
6	Detern	nination of radius of plan convex lens/wavelength of light/Flatness testing by Ne	wton's rings	
7	Detern	nination of wave length of light using diffraction grating		
8	Detern	nination of resolving power of telescope		
9	Detern	nination of thickness of a thin wire by air wedge		
10	Detern	nination of refractive index for O-ray and E-ray		
11	Detern	nination of velocity of sound in liquid by ultrasonic interferometer		
12	Ultrase	onic probe-a study		
—	(D			
Proj	ect Bas	ed Learning		
	Design	and simulation of automatic solar powered time regulated water pumping		
2	Solar t	udy on the affact of length on the resistance of a correct wire (world's stimulation of a correc	ohme lorr D	
5	line st	up on the effect of length on the resistance of a copper wire (verification of v propertional to 1)	onins law R	
1	Doggib	y proportional to 1) la affacta of alastromagnatic fields (amf) on human haelth		
4	POSSID	and construction of digital distance measuring instrument using ultresonics		
5	Measure	rement /simulation of reverberation time		
7	Study	of vibration of bars		
/	Sudy			

8	Determination of absorption coefficient of sound absorbing materials						
9	Determination of velocity of O-ray and E-ray in different double refracting materials						
10	Quantum confinement effect in wide band semiconductors						
11	Need of medium for propag	ation of sound wave					
12	Small wind turbines as a sou	arce of electricity					
13	Tesla Coil						
14	Thin film interference in soa	ap film-formation of colours					
15	LiFi- wireless data transfer	system using light					
Text	Books/References						
1	A Textbook of Engineering	Physics, M N Avadhanulu, P G Kshirsagar and T V S Arun Murthy, S.					
	Chand Publishing(2018)						
2	Engineering Physics, R K G	aur and S L Gupta, Dhanpat Rai Publishing Co Pvt Ltd (2015)					
3	Concepts of Modern Physic	s, Arthur Beiser, Shobhit Mahajan and S.Rai Choudhury, McGraw Hill					
	Education (2017)						
4	Fundamentals of Physics, Je	earl Walker, David Halliday and Robert Resnick, John Wiley and Sons					
	(2013)						
5	Optics, Francis Jenkins and	Harvey White, Tata Mcgraw Hill (2017)					
6	Principles of Physics, John	W. Jewett, Cengage publishing (2013)					
7	Introduction to Solid State F	Physics, C. Kittel, Wiley and Sons (2004)					
8	Principles of Solid State Phy	vsics, H. V. Keer, New Age International (1993)					
9	Laser and Non-Linear Optic	s, B. B. Laud, New Age International Private Limited (2011)					
10	Nanotechnology: Principles	and Practices, Dr. S. K. Kulkarni, Capital Publishing Company (2014)					
11	Science of Engineering Mat	erials- C. M. Srivastava and C. Srinivasan, New Age International Pvt.					
	Ltd. (1997)						
12	Introduction to Electrodynamic	mics-David R. Griffiths, Pearson(2013)					
Sylla	abus for Unit Tests						
Unit	Test I	Units I, II, and III					
Unit	Test II	Units IV, V, and VI					

Computer Aided Graphics							
Designatio	n: Engineering Science						
Pre-requis	ite Courses: Fundamentals of	Mathematics					
Teaching S	Scheme	Examination Scheme	Credits	Allotted			
Lectures	: 3 Hours/Week	End Semester Examination : 6	0 Marks Theory	: 03			
Practical	: 4 Hours/ Week	Internal Assessment : 4	0 Marks TW/OR	/PR : 02			
Total	: 7 Hours / Week	Term-work (TW) : 2	5 Marks Total Cr	redits : 05			
		Practical/Oral : 2	5 Marks				
		Total :					
		150Marks					
Course Ob	jectives:						
To understar	nd the basic principles of engin	eering drawing and highlight the imp	ortance of Computer	Alded			
To develop t	be graphical skills for commun	ication of concepts & idea through the	chnical drawings				
Course Ou	tcomes:		connear drawnigs				
After comp	letion of the course students	would be able to:					
1	Understand the fundamenta	concepts of CAD Drawing its an	plications different	types of lines			
-	curves and dimension technic	ue with practical application.	prioutions, uniorent	types of mes,			
2	Understand the concept of (Drthographic projections and apply i	t to draw detail viev	vs by using 1st			
	angle projection method						
3	Understand the concept of isometric projection and apply it to construct 3D view of a component.						
4	Understand the concept of projections of Point. Line and plane: and apply to draw its projection by						
	using 1st angle projection method and to locate its traces						
5	Understand the concept of p	rojections of different types of solids	and sectioned solid	s; and apply to			
_	draw its projection by using 1	st angle projection method					
6	Understand the concept of	Development of Lateral surfaces; an	d apply to develop	ment of simple			
	and sectioned Solids.	•					
		Topics covered					
UNIT-I	Fundamentals of CAD and	Engineering Curves		(08 Hours)			
	Introduction to Engineering	Drawing, Types of lines and Dimens	ioning, Layout and	、 <i>、 、</i>			
	size of drawing sheets, Sca	les. Engineering Curves-Ellipse of	lrawing by Focus-				
	Directrix Circle Method ar	d Concentric Circle Method, Invo	olutes of a circle,				
	Cycloid, Archimedean Spiral	Aided Drofting (CAD) and its on	nliantiona Vanious				
	softwares for Computer Aid	ed Drafting AutoCAD initial set	ing and AutoCAD				
	commands	ed Drafting. Autoerab initial set					
UNIT-II	Orthographic Projection			(08 Hours)			
	Basic principle planes of Pr	ojections, First and Third angle me	thod of Projection,	、 <i>、 、</i>			
	Orthographic Projections of	given Pictorial view by first angle	projection method				
	only, Sectional orthographic	Projection. Orthographic Drawing by	using AutoCAD.				
UNIT-III	Isometric Projections			(08 Hours)			
	Principles of Isometric Pro	ojections-Isometric Scale, Isometric	e Axes, Isometric				
	Projections and Isometric D	rawing. Constructions of Isometric	view from given				
	Orthographic Views and give	n origin.					
	Isometric Drawing by using A	AutoCAD.					

UNIT-	IV Projection of Points, Lines and Plane Surfaces	(08 Hours)		
	Projections of Points, Projections of Oblique lines in First Quadrant, Traces.			
	Projections of Planes- Projection of perpendicular and oblique planes (polygonal			
	and circular surfaces), Obtaining true shape of plane surface.			
	Projection of Points, Lines and Plane Surfaces by using AutoCAD.			
UNIT-	V Projection of Solids and Sectioned Solids	(08 Hours)		
	Introduction of solids-Types of solids, Projection of solid inclined both references			
	plane, Projection of common solids such as prism, pyramid, cylinder and cone.			
	Projection of solids cut by AIP and AVP, obtaining true shape of a section.			
	Projection of Solids and Sectioned Solids by using AutoCAD.	(0.0.77		
UNIT-	VI Development of Lateral Surfaces	(08 Hours)		
	Development of the lateral surfaces of solids like Prisms, pyramids, cylinders and			
	AutoCAD			
	AutoCAD:			
Droioo	t Dagad Laaming			
Follow	t Daseu Learning			
FOIIOW	ing is the list topic for project based rearning (Not Ennited to) based on the synabus contents.			
1	To obtain industrial drawings to identify the types of lines, dimensioning methods a projection.	nd method of		
2	To develop the model/charts based on engineering curves			
3	To prepare model/chart for identification of engineering curves in nature for industrial, socie	etal, etc		
	application			
4	To demonstrate different methods of orthographic projection.			
5	To demonstrate projection of Points			
6	To demonstrate projection of Lines	b demonstrate projection of Lines		
7	To demonstrate projection of Planes.			
8	To demonstrate projection of Solids	demonstrate projection of Solids		
9	To demonstrate developments of surfaces for solids			
10	To demonstrate industrial application of development of surfaces such as steam carrying p air conditioning systems, etc.	oipes, Ducts of		
11	To demonstrate Isometric projection method through model of a cube			
*Stude:	nts in a group of 3 to 4 shall complete any one project from the above list.			
Term	Work			
Term w	ork shall consist of seven A2 size (594 mm x 420 mm) sheets using AutoCAD.			
1	Types of lines, Dimensioning practice, 1st and 3rd angle methods symbol			
2	Engineering Curves			
3	Orthographic Projections			
4	Isometric views			
5	Projections of Points and Lines and planes			
6	Projection of Solids and Section of solids			
7	velopment of Lateral surfaces			
Text B	ooks:			
1	"Elementary Engineering Drawing", N.D. Bhatt, Charotar Publishing house, Anand India.			
2	2 "Text Book on Engineering Drawing", K.L.Naravana & P.Kannaiah, Scitech Publications, Chenr			
Refere	nces:			
1	"Fundamentals of Engineering Drawing", Warren J. Luzzader, Prentice Hall of India, New I	Delhi.		
2	"Engineering Drawing and Graphics", Venugopal K., New Age International publishers.			

3	3 M.B. Shah and B. C. Rana, "Engineering Drawing", 1st Ed, Pearson Education, 2005				
4	P. S. Gill, "Engineering Drawing (Geometrical Drawing)", 10 Edition, S. K. Kataria and Sons, 2005				
5	P. J. Shah, "Engineering Drawing", C. Jamnadas and Co., 1 Edition, 1988				
Syllab	Syllabus for Unit Test:				
Unit Te	Unit Test : I Units : I, II, and III				
Unit Te	Unit Test : II UNIT : IV, V, and VI				

CHEMICAL ENGINEERING: SCOPE AND SIGNIFICANCE

Designation: Basic Science

Course Pre-requisites: Basic Chemistry

Teaching Scheme		Examination Scheme		Credits Allot	ted
Lectures	: 03 Hours/Week	End Semester Examination	: 60Marks	Theory	: 03
		Internal Assessment	: 40Marks	Total credits	: 03
		Total	: 100Marks		
Course Out	comes				
After comple	etion of the course stu	udents will be able to			
1.	Appraise the import	tance of chemical engineering	and related pro	ocesses	
2.	Select unit operation	ns and processes for desired a	pplication		
3.	Justify the importan	nce of chemical engineering in	Petroleum and	l Petrochemical	industries
4.	Justify the importan	ice of chemical engineering in	Food and Pha	rmaceutical ind	ustries
5.	Justify the importan	nce of chemical engineering in	agricultural in	dustries	
6.	Design a pathway to	o face todays and upcoming c	hallenges using	knowledge of	chemical
	engineering				
		Topics Covered			
UNIT - I	Introduction				(06 Hours)
	Chemical Engineering: Origin and development; Definition of Chemical				
	Engineering; Major components and scope of Chemical Engineering; Role of				
	Chemical Engineer in Chemical and allied industries; Chemical Engineering				
UNIT - II	Unit operations an	ny d Unit processes			(06 Hours)
	Definition of unit of	operations and unit processes	Unit operation	ns: fluid flow,	(00 110013)
	heat and mass trans	sfer, and mechanical operation	ns; Unit proces	ses: Addition,	
	condensation, subst	itution; Application of unit o	perations and u	init processes:	
	industrial case studi	les.			
UNIT - III	Petroleum and Pet	rochemical Industry			(06 Hours)
	Overview of petro	leum and petrochemical ind	ustry; Major p	etroleum and	
	petrochemical indu	stry: Economical impact	processes in p	euoleuni anu	
UNIT - IV	Food and Pharma	ceutical Industry			(06 Hours)
	Overview of food a	and pharmaceutical industries	: Unit operation	ns involved in	(***)
	food and pharmaceutical industries; Application of Chemical Engineering:				
	industrial case studi	es; Role of Chemical Enginee	ers; Economical	l impact.	
UNIT - V	Agro-chemical Ind	lustry			(06 Hours)
	Significance of agi	ro-chemicals; Role of chemi	cal engineer ir	synthesis of	
	agro-chemicals; Va	lue added products: biofertil	izers, biofuel, l	pioadsorbents,	
	etc.; Fertilizers, p	esucides, nerdicides, crop gr	owth enhancer	s, etc.; Social	
	and economical imp	portance of agricultural cheffil	cals		

UN	[T - VI	Chemical Engineering and challenges	(06 Hours)
		(<i>i</i>) <i>Energy:</i> Sources of energy and constraints; Need for renewable energy	
		(<i>ii</i>) <i>Air:</i> Sources of air pollution; Air quality parameters; Air pollution control	
		(iii) Water: Water quality parameters; Water recycle and reuse; Water	
		treatment methodologies	
		Role of Chemical Engineer in Energy, Air and Water sectors; Economical	
		impact.	
T	4 D I	/ D_£	
1 ex	t BOOKS/		1 1 1 1
	1	Watcher: Kirk OthmerEncyclopaedia of Chemical Technology, 4 th Ed, Jon	h Wiley and
		Sons, New York, 2000	
	2	F.Ullmann: Ullmann'sEncyclopaedia of Industrial Chemistry, 16 th Ed,	Wiley VCH,
		Edinberg, 2016	
	3	R. H. Perry, D. W. Green: Perry's Chemical Engineering's Handbook, 9 th J	Ed., McGraw
	1	Hill, New Tolk, 2018	ra 2007
	4	1. D. Wilson. Encyclopaedia of Separation Science, 5 Ed., whey VCH Editoer	ig, 2007
	5	R. Trebal: Mass Transfer operations, McGraw Hill Publications 1997	
	6	McCabe, Smith, Harriot: Unit Operations of Chemical Engineering, N	AcGraw Hill
		Publications, 1997	
Proj	ject bas	ed learning: Below is the list of possible topics, which is for guidance faculty ca	an design and
prov	vide relev	vant topics in addition to these	
1	Study a	and prepare a report on the activities and roles carried out by chemical engineer	s in different
2	1ndustr	10S	in notional
2	econon	and prepare a report on the chemical and amed industries and their importance	e in national
3	Study a	and prepare a report on the fluid flow operations used in any one chemical indu	stry and their
5	importa	ance on overall processing	sury und mon
4	Investi	gate and prepare a report on the heat transfer operations used in any one chen	nical industry
	and the	ir importance on overall processing	
5	Investi	gate and prepare a report on the mass transfer operations used in any one chen	nical industry
	and the	ir importance on overall processing	
6	Investi	gate and prepare a report on the mechanical operations used in any one chemical	industry and
7	their in	portance on overall processing	. 1.1 .
/	Investi	gate and prepare a report on the unit processes used in any one chemical indu-	stry and their
8	Study	ance on overall operation the life and work of eminent chemical engineer from India and prepare a s	raport on the
0	econon	nical and societal impact of their work	eport on the
9	Investi	gate and prepare a report on formation processing life cycle application and rol	e of chemical
	engine	ering in any one petroleum product and its societal and economical impact, along	with the role
	of chen	nical engineer	, -
10	Investi	gate and prepare a report on formation, processing, life cycle, application and rol	e of chemical
	enginee	ering in any one petrochemical product and its societal and economical impact	
11	Investi	gate and prepare a report on formation, processing, life cycle, application and rol	e of chemical
	enginee	ering in any one processed food product and its societal and economical impact	_
12	Investi	gate and prepare a report on formation, processing, life cycle, application and rol	e of chemical

	engineering in any one pro	cessed pharmaceutical product or drug and its societal and economical			
	impact				
13	Investigate and prepare a re	port on formation, processing, life cycle, application and role of chemical			
	engineering in any agrocher	nical and its societal and economical impact			
14	Investigate and prepare a re-	eport on the challenges of air and water pollution, its effects and role of			
	chemical engineering in overcoming the same				
15	Investigate and prepare a report on the challenges in energy sector, its effects and role of chemical				
	engineering in overcoming the same				
Syll	Syllabus for Unit Test:				
Unit	t Test : I	UNIT : I, II, and III			
Uni	t Test : II	UNIT : IV, V, and VI			

DATA STRUCTURE (C PROGRAMMING)

Designation: Computational

Pre-requisite Courses: Basic knowledge of computers

Teaching Scheme		Examination Scheme		Credits Allotted
Practical	: 04 Hours/Week	Term-work (TW)	: 50 Marks	TW/OR/PR : 02
Total	: 04 Hours/Week	Practical/Oral	: 50 Marks	Total Credits : 02
		Total	: 100 Marks	

Course Outcomes

1	Apply the knowledge of constant, variables, data types and various standard input output functions
	to write C-programs.

- 2 Design a flow chart and write C-programs using control constructs and looping statements and arrays.
- 3 Develop C-programs using string and pointers.
- 4 Elucidate the basic concepts of Data structure
- 5 Clarify dynamic store management.
- 6 Plot graphs using C- Programming

Topics Covered

Introduction; Character sets; Constant; Variables and Data Types: integer, float, double,
char, string; Operators: arithmetic, relational, logical, increment and decrement,
assignment, conditional; Standard input-output functions: printf (), scanf (), getch () or
getchar();Programs using if statement, if-else statement, goto statement, etc.; Programs
based on standard input-output functions used in C-Programming.

- 1. Programs based on if-else statements.
- 2. Programs based on goto statements.
- 3. Programs based on switch-case statements

UNIT-II Loops and Arrays

Programs using while loop; do-while loop and for loop; Single dimensional and multidimensional arrays.

- 4. Programs based on while loop.
- 5. Programs based on do-while loop.
- 6. Programs based on for loop.
- 7. Write algorithm and flowchart for array.
- 8. Programs based on single dimensional arrays.
- 9. Programs based on multi-dimensional arrays.

UNIT-III String and Pointers

Programs using string; String functions: strlen()/ strcpy()/ strrev()/ strcat ()/strlwr ()/ strupr ()/ strcmp (); Programs using pointers; Use of * and & operators; Pointer arithmetic's; Use of pointers; Pointer and function: parameter passing to function by

	reference and by value; File handling; Linked list.			
	10. Programs based on strings and string functions.			
	11. Programs based on pointers and function.			
UNIT-IV	Introduction to data structures			
	Storage structure for arrays; Sparse matrices, Stacks and Queues: Representation and			
	application; Linked lists: Single linked lists, linked list representation of stacks and			
	Queues; Operations on polynomials; Double linked list; circular list.			
12. Programs based on Array implementation of stack and queues.				
	13. Programs based on Linked list implementation of stack and queues			
UNIT-VI	Dynamic storage management			
	Garbage collection and compaction; Infix to post fix conversion; postfix expression			
	evaluation; Trees: Tree terminology, Binary tree, Binary search tree.			
	14. Programs based on checking balanced parentheses in an expression.			
	15. Programs based on implementation of tree and tree traversal.			
	16. Programs based on implementation of binary search tree.			
UNIT-VI	Graphs:			
	Graph terminology; Representation of graphs; path matrix; BFS (breadth first search);			
	DFS (depth first search); Topological sorting; Warshall's algorithm (shortest path			
algorithm.): Sorting and Searching techniques : Bubble sort. selection sort.				
Ouick sort, merge sort, Heap sort, Radix sort, Linear and binary search methods				
	17. Programs based on bubble sort, insertion sort, quick sort, merge sort			
	18. Programs based on implementation of linear and binary search methods			
In addition to	these above stated programs / practical's concern faculty member may design his/her own			
programs / pr	actical's.			
Term Work				
Term work	will consist of the programs/practical's listed above, out of which any ten			
programs/pra	ctical's are to be performed in laboratory by the students.			
Toxt Doolse/	Deferences			
1 1 1	V C Kanetkar Let Us C 15 th edition BPB Publications New Delbi 2016			
2	M. Cooper. The Spirit of 'C': An Introduction to Modern Programming First edition			
Jaico Publishing House. 1998				
3	Rajaraman V, Adabala N, Fundamentals of Computers, 6th edition, Prentice Hall India			
	Learning Private Limited, 2014.			
4	R. Thareja, Data Structures Using C, 2 nd edition, Oxford University Press India, 2014.			
5	A. N. Kamthane, Introduction to Data Structures in C, Pearson India, 2010			
6	A. K. Sharma, Data Structure Using C, Pearson India, 2010			

Programme: B. Tech Chemical (2021)Sem – II(Chemical)

DIFFERENTIAL AND INTEGRAL CALCULUS

Designation: Mathematics

Pre-requisite Courses: Basic knowledge of mathematics

Teaching Scheme		Examination Scheme		Credits Allotted	
Lectures	: 04 Hours/Week	End Semester Examination	: 60 Marks	Theory	: 04
Tutorial	: 01 Hours/Week	Continuous Assessment	: 40 Marks	Tutorial	: 01
Total	: 05 Hours/Week	Total	: 100 Marks	Total Credits	: 05

Topics Covered					
UNIT-I	Ordinary Differential Equations	(08 Hours)			
	Formation of the ordinary differential equations(ODEs), Solution of an				
	ordinary differential equation, Equations of the first order and first degree,				
	Linear differential equation, Bernoulli's equation, Exact differential				
	equations, Equations reducible to exact equations, Ordinary differential				
	equation of higher order with constant and variable coefficients.				
UNIT-II	Partial Differential Equations	(08 Hours)			
	Functions of two or more variables, Partial derivatives, Homogeneous				
	functions, Euler's theorem, Total derivative, Change of variables, Jacobians -				
	Geometrical interpretation: Tangent plane and normal to a surface.				
UNIT-III	Applications of Ordinary and Partial Differential Equations	(08 Hours)			
	Taylor's theorem for two variables, Errors and approximations, Maxima and				
	Minima of functions of two variables, Lagrange's method of undetermined				
	multipliers, Differentiation under the integral Sign, Leibnitz's rules. Solution				
	of Higher order ODE with constant and variable coefficients and its				
	applications, Series solution of differential equations, Bessel functions,				
	Legendre Polynomials, Error function. Applications of partial differential				
	equations to chemical engineering problems.				
UNIT-IV	Integral Calculus	(08 Hours)			
	Beta and Gamma functions, Change of order of integration, Differentiation				
	under the integral sign, Surface integrals, Volume integrals, Error functions,				
	Double and Triple integrations.				
UNIT-V	Applications of Integral Calculus	(08 Hours)			
	Applications to Area, Volume, Mean and Root Mean Square Values.				
UNIT-VI	Fourier and Laplace Transforms	(08 Hours)			
	Fourier series: Trigonometric series, Even and odd functions, Half-range				
	series, Parseval's identity, Complex form, Fourier integrals, Fourier sine and				
	cosine integrals. Fourier transform: Fourier sine and cosine transforms and				

	their elementary p	roperties. Convolution theorem, Application of Fourier		
	transforms to bound	lary value problems.		
	Laplace and invers	II a Lanlace transform of some standard functions. Shifting		
	theorems Laplace	transform of derivatives and integrals Convolution		
	theorem Initial at	ad final value theorem Laplace transform of periodic		
	functions. Error fu	inctions. Heaviside unit step function and Dirac delta		
	function. Application	ons of Laplace transform.		
Proj	ect Based Learning			
Tern	n work will consist of the ex	speriments listed below, which are to be performed in laboratory by the		
stude	ents.			
1.	Formation of differential e	quation		
2.	Evaluate the electric circuit	problem using differential equations.		
3.	Evaluate the heat conduction	on in 1-D using differential equations.		
4.	Find the error using the cor	cept of total derivative.		
5.	Solving the wave equation	using partial differential equations.		
6.	Solving the heat equation in	n 2-D using partial differential equations.		
7.	Find Maxima and Minima	of functions of two variables.		
8.	Use differentiation under the integral Sign to solve integrals.			
9.	Find root mean square values using integrals.			
10.	Find the volume using triple integrals.			
11.	Find work done using Green's theorem.			
12.	Find scalar potential using	vectors.		
13.	Evaluating integrals using Green's theorem, Gauss's and stoke's theorem.			
14.	Use Laplace transform to solve differential equations.			
15.	Use Laplace transform to solve integrals equations.			
Torrt	Doolyg/Dofomonoog			
	DOOKS/References	artikar Applied Mathematics (Volumes Land II) 7 th Ed. Pupe Vidverthi		
1	F. N. Waltikai and J. N. W	artikar, Appried Mathematics (Volumes 1 and 11), 7 Ed., Pune Vidyartin		
2	Grina Prakasnan, Pune, 201	.5.		
2	B. S. Grewal, Higher Engin	eering Mathematics, 42 Ed., Khanna Publication, Delhi, 2017		
3	B.V. Ramana, Higher Engineering Mathematics, 6 th Ed., Tata McGraw-Hill, New Delhi, 2008.			
4	E. Kreyszig, Advanced Engineering Mathematics, 10 th Ed., John Wiley & Sons, Inc., 2015.			
5	P. V. O'Neil Advanced Engineering Mathematics, 7 th Ed., Cengage Learning, 2012.			
6	M. Greenberg Advanced Engineering Mathematics, 2 nd Ed., Pearson Education, 1998.			
Syllabus for Unit Tests				
Unit	Test I	Units I, II, and III		
Unit	Test II	Units IV, V, and VI		

	Organic Chemistry- II				
Designation	Designation: Basic Science				
Pre-requisi	ite Courses: Basic knowled	ge of chemistry			
Teaching S	Scheme	Examination Scheme		Credits A	Allotted
Lectures	: 4 Hours/Week	End Semester Examination	: 60 Marks	Theory	: 04
Practical	: 2 Hours/ Week	Internal Assessment	: 40 Marks	TW/OR/I	PR : 01
Total	: 6 Hours / Week	Term-work (TW)	: 25 Marks	Total Cre	edits : 05
		Practical/Oral	: 25 Marks		
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		Total	:150Marks		
Course Ob	jectives:		1	· · ·	
To develop t	he interest among the students	regarding chemistry and their app	plications in ei	ngineering	
To develop a	confidence among students abo	ut chemistry, how the knowledge	of chemistry	is applied in	n
The student	should understand the concepts	s of chemistry to lay the groundw	ork for subseq	uent studie	s in the field
such as Cher	nical Engineering.			aont staate.	
Course Ou	tcomes:				
After comp	letion of the course students	would be able to:			
1	Understand the fundamental	s of reaction kinetics for nucleop	philic substitu	tion reaction	ons and apply
	the knowledge to determine r	eaction mechanisms.			
2	Understand and apply the o	concept of reaction kinetics for	elimination	reactions a	nd determine
	reaction mechanisms.				
3	Explain and illustrate the knowledge about the synthesis of haloalkanes and haloarenes with its chemical reactions.				
4	Explain the importance of ionic liquids with synthesis and structural determination of natural				
	products.				
5	Apply the knowledge about the synthesis, properties and uses of such heterocyclic compounds like				
	pyrole, pyridine, thiophene and furan.				
6	Illustrate the principles of organometallic chemistry and importance of synthesis reactions and their				
	applications				
		Topics covered			
UNIT-I	Nucleophilic Substitution at	t saturated carbon			(08 Hours)
	Introduction, Nucelophiles	and leaving groups, Mechan	nism of nuc	cleophilic	
	substitution:-SN1 reaction: K	inetics and Mechanism. SN1 rea	action: stereoc	chemistry	
	(Racemisation) The SN2	reaction: Kinetics and Mecha	mism. SN2	reaction:	
	stereochemistry (inversion) C	Comparison of SN1 and SN2 feac	uon.		
UN11-11	Introduction Mechanism of 1	Aromatic substitution reactions 2-elimination reactions. The E2	mechanism	Fvidence	(08 Hours)
	for E2 mechanism. Orienta	tion and reactivity in E2:- Say	vtzeff rule. H	Ioffmann	
	elimination. E1 mechanism, I	Evidence for E1 mechanism, Orie	ntation in E1		
	General mechanism of Ele	ctrophilic substitutions, Friedel-	-Crafts alkyla	tion and	
	acylation reactions, nitration,	halogenations, sulphonation, chlored	oro-sulphonati	ion.	
UNIT-III	Haloalkanes and haloarene	5			(08 Hours)
	Alkyl halides: Methods of pr	eparation, nucleophilic substitution	on reactions –	SN1 and	
	SN2 mechanisms and effect	of solvent etc. Aryl halides: M	ethods of pre	paration-	
	diazonium salts. nucleophili	c aromatic substitution. Relativ	e reactivity	of alkyl,	

	allyl/benzyl, vinyl and aryl halides towards nucleophilic substitution reactions. Nitro		
	and amino arenes: General reactions, Basicity of aminoarenes		
UNIT-	UNIT-IV Ionic Liquids and Natural products		
	Ionic Liquids: Introduction to Ionic liquids, structure and formation of ionic liquids,		
	Physical properties of ionic liquids.		
	Natural Products: Terpenoids :- Introduction, Isolation and Purification		
	Classification of Terpenoids, General methods for structure determination of		
	Terpenoids, Isoprene rule. Alkaloids :- Introduction, Extraction and Purification		
General properties of Alkaloids, General methods for structure determination of			
	Alkaloids.		
UNIT-	V Heterocyclic Compounds	(08 Hours)	
	Definition, classification and nomenclature of heterocyclic compounds.		
	Five membered heterocyclic compounds - Furan, Thiophene and Pyrrole Structure		
	and Method of synthesis, Properties and reactions, Electrophilic orientation.		
	Six membered heterocyclic compounds – Pyridine, Structure and Method of		
TINIT	synthesis, Properties and chemical reactions.	(00 II	
UNII-	VI Introduction to Organomotallic Chamistry: Matal carbon bond formation factors	(08 Hours)	
	affecting M-C bond formation: Transition metal- π alkene complexes: synthesis		
	reactions bonding and stability Metal Organometallics: Organo-Lithium		
	Compounds and Organo-Magnesium Compounds Applications of organometallic		
	compounds: in catalytic processes such as hydroformylation and hydrogenation.		
Assign	ments		
Six ass	ignments to be given by the subject teacher (Theory)-one from each unit/one mini pro	ject with	
report-	students can work in group of 4 Maximum.	5	
Projec	t Based Learning		
Following is the list topic for project based learning (Not Limited to) based on the syllabus contents:			
1	Prepare and give the composition and role of chelating compounds in engineering application	ins	
2	Prepare a safe way to make surface disinfectant at home.		
3	Write a review paper based on the role of alkaloids and derivatives in the cosmetic food an	d	
5	pharmaceutical industries and get it published in reputed journal (eg. Google Scholar).	G	
4	With the help of extraction from rose petals/discharge essential oil. How to present and intro	duce rose	
-	petals essential oil products?		
5	Prepare a model based on structure and formation of ionic liquids.		
6	Write a review paper based on diazonium salts with nucleophilic aromatic substitution		
7	In practice and get it published in reputed journal (eg. Google Scholar).		
*Stude	its in a group of 3 to 4 shall complete any one project from the above list.		
Term Y	Work		
1	Determination of Rf values and identification of organic compounds.		
	1) To prepare tribromobenzene from aniline.		
	2) To prepare p-nitro aniline from acetanilide.		
	3) To separate green leaf pigments by thin layer chromatography and determine their R	fvalues	
2	Determine the type and performs functional group test for the given organic compounds-		
	1) Aldehydes		
	2) Ketones		
	3) Phenols		
	4) Carboxylic acids		

	5) Esters				
	6) Ethers				
Text B	Books/ References:				
1	R. T. Morrison, R. N. Boyd and S	K Bhattacharjee, Organic Chemistry, 7th Ed., Pearson Prentice Hall,			
	Chennai, 2011				
2	J. J. Li, C. Limberakis, D. A. Pflum	n, Modern Organic Synthesis, Oxford University Press, New York,			
	2007.				
3	J. Clayden, N. Greeves, S. Warren,	and P. Wothers, Organic Chemistry, Oxford University Press, 2009			
4	P. Wasserscheid, T. Welton, Ionic	Liquids in Synthesis, 2nd edition, Wiley-VCH, 2007			
5	McMurry, J.E. Fundamentals of O	rganic Chemistry, 7thEd. Cengage Learning India			
	Edition, 2013.				
Syllabus for Unit Test:					
Unit Te	Unit Test : I Units : I, II, and III				
Unit Te	Unit Test : II UNIT : IV, V, and VI				

INORGANIC CHEMISTRY

Designation: Basic Science

Pre-requisite Courses: Basic knowledge of Chemistry, Types of bonding, Periodic Table.

Teaching Scheme		Examination Scheme		Credits Allotted	
Lectures	: 03 Hours/Week	End Semester Examination	: 60 Marks	Theory : 04	
Practical	: 02 Hours/Week	Continuous Assessment	: 40 Marks	Tutorial : -	
Total	: 05 Hours/Week	Term-work (TW)	: 25 Marks	Practical : 01	
		Practical/Oral	: 25 Marks	Total Credits : 04	
		Total	: 150 Marks		

Course Ou	Course Outcomes		
1	Appraise the importance, formation and rearrangement of chemical bonding.		
2	Infer the chemical bonding as per the molecular structure.		
3	Justify the chemical bonding based on the properties of s, p, d, f elemental orbitals and		
	chemistry of group IA, IIB, IIIB and VIIB.		
4	Justify the importance of transition metal complexes and design their chemical interactions.		
5	Appraise the importance, formation and rearrangement of chemical bonding based upon acid		
	base chemistry.		
6	Design a pathway for chemical transformation through chemical kinetics		

Topics Covered			
UNIT-I	Chemical Bonding	(06 Hours)	
	Quantum mechanical methods in chemical bonding: molecular orbital theory,		
	symmetry of molecular orbitals, MOs for homonuclear diatomic molecules,		
	application of MO theory to heteronucleardiatomics, valence bond theory,		
	hybridization, hybridization involving d orbitals, conjugated molecules,		
	Huckel molecular orbital theory of conjugated systems, metallic bonding, band		
	theory.		
UNIT-II	Chemical Bonding and Molecular structure	(06 Hours)	
	Orbital concept and its implications for periodicity and chemical reactivity,		
	Lewis bonding and the derivation of Lewis structures, Octet rule and		
	extensions to the octet rule, VSEPR theory, Valence Bond theory and hybrid		
	orbitals, Molecular Orbital theory and delocalised orbitals.		
UNIT-III	s, p, d, f elements and chemistry of group IA, IIB, IIIB and VIIB	(06 Hours)	
	Periodic Table, s, p, d and f elements and their general properties, correlations		
	among various properties. Main group Chemistry: Hydrogen, Chemistry of		
	Group IA, II B and Group IIIB to VIIB elements and noble gases		
UNIT-IV	Transition Metal	(06 Hours)	
	Bonding in transition metal complexes: coordination compounds, crystal field		
	theory, octahedral, tetrahedral and square planar complexes, crystal field		
	stabilization energies, Jahn-Teller theorem, spectral and magnetic properties.		

UNIT-V	Acid-base and solution	(06 Hours)		
	Brønsted and Lewis acids, pH concept and pK values, Hydrolysis equilibria of			
	weak acids and bases, Hydrolysis equilibria of polyprotic acids/bases,			
	Speciation Diagrams, Hydrolysis equilibria in salt solutions, Buffers,			
	Solubility and solubility product, Simple coordination (complex formation)			
	equilibria, Simultaneous equilibria			
UNIT-VI	Chemical kinetics	(06 Hours)		
	Rate of reaction and rate laws, Elementary and non-elementary reactions,			
	Empirical kinetics, First and second order reactions, Integral and differential			
	evaluation, Isolation method, Initial rate method, Complex mechanisms,			
	Parallel reactions, Reactions with equilibrium, Sequential reactions, Radical			
	chain reactions, Derivation of a mechanistic rate law, Steady-state			
	approximation, Quasi-equinoritum approximation, Reaction intermediates and transition states. Temperature dependence of rates (Ambanius law)			
Draigat ha	transition states, reinperature dependence of fates (Affiendus faw).			
Project Das	seu learning			
• Pre	epare a nardware model based on Huckel molecular orbital theory of conjugated s	ystems.		
• Wi	th the help of Hydrolysis equilibria, select for study various salt solutions.			
• Wr	ite a review paper based on applications of Bonding in transition metal complexes	s and get it		
pul	plished in reputed journal (eg. Google Scholar).			
• Wi	th the help of, d and f elements and their general properties, prepare a mod	lel based on		
cor	relations among various properties,			
• Pre	pare a hardware model based on VSEPR theory.			
• Write a review paper based on applications of MO theory to heteronucleardiatomics and get it				
pul	published in reputed journal (eg. Google Scholar).			
*Students in	n a group of 3 to 4 shall complete any one project from the above list.			
Term work	ζ.			
Term work	will consist of the experiments listed below, which are to be performed in laborat	ory by the		
students				
1	To determine the equivalent weight of the given metal (Zn or Mg) Eudiometrical	lly.		
2	To determine distribution coefficient of iodine between water and CCl ₄ .			
3	To standardize Na ₂ SO ₄ solution by preparing K ₂ Cr ₂ O ₃ & to estimate % of coppe	er from given		
	solution.			
4	Heat of neutralization.			
5	Thermodynamic parameters.			
6	To determine loss in weight & percentage composition of NaHCO ₃ by gravimetr	ric method.		
7	To determine water of crystallization of MgSO ₄ .xH ₂ O by gravimetric method.			
8	To determine water of crystallization of BaCl ₂ . xH ₂ O by gravimetric method.			
9	Determine λ -max for KMnO ₄ and find concentration of unknown solution	on by using		
	colorimetric measurements.			
10	Determine surface tension of a given liquid by stalagmometer.			
11	Experiments based on chemical reaction equilibria			
12	Experiments based on chemical reaction kinetics			

13	Experiments based on electrolyte systems, acid- base and solution chemistry				
14	Experiments based on surface and interfacial phenomena				
Text Book	s/References:				
1	C.E. Housecroft ,E.C. Constable, Chemistry, 4 th Ed., Pearson - Prentice Hall, London, 2010.				
2	J. D. Lee, Concise Inorganic Chemistry, Chapman & Hall, London, 1996.				
3	J. A. C. Broekaert, Analytical Atomic Spectrometry withFlames and Plasmas, Wiley-VCH				
	Verlag GmbH & Co. KGaA, New York, 2002				
4	W. L. Jolly, Modern Inorganic Chemistry, McGraw-Hill International, 2 nd Ed., New York,				
	1991.				
5	J. E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry, Principles of Structure and				
	Reactivity, Harper Collins, New York 1997.				
Syllabus for Unit Tests					
Unit Test I	Units I, II, and III				
Unit Test I	I Units IV, V, and VI				

		BIOLOGICAL SCIENCES		
Designation: Professional Core				
Pre-requisi	ite Courses: Biology,	Chemistry		
Teaching S	Scheme	Examination Scheme Cred	its Allotted	
Lectures	: 3 Hours/week	End Semester Examination : 60 Marks Theor	·y : 03	
Practical	: 4 Hours/ Week	Internal Assessment : 40 Marks TW/C	$\frac{\text{DR/PR}}{\text{C}} : 02$	
Total	: / Hours / Week	Term-work (TW) : 25 Marks Total Desetion//Ord : 25 Marks :	Credits : 05	
		Practical/Oral : 25 Marks		
Course Ou	teomos.	10tal : 130Marks		
After comp	letion of the course stu	dents would be able to:		
1 Identif	v the microorganism a	nd its structure		
2 Loorn	the basics of biochamic			
$\frac{2}{2}$ Lealli				
3 Analyz	ze the enzyme technolo	by with different aspects.		
4 Identif	y the biomaterials and	their applications.		
5 Learn	the concept of Biodive	rsity and applications of biological science.		
6 Analyz	ze the Bio safety frame	work in India.		
		Topics covered		
UNIT-I	Molecular Cell Bi	ology	(06 Hours)	
	Introduction to	cell; Eukaryotes and prokaryotes; Classification	of	
	microorganisms an	important cell types; Structures of the bacterial of	cell;	
	Classification and	Identification of microorganisms; Cultivation of bacte	eria;	
	Reproduction and	growth.	(0 (H , 1	
UN11-11	Biological ovidet	ions: Photosynthesis: Carbohydrates lipids and t	(Vo Hours)	
	motobolismy Struc	ture of biomologulas. Intre and intermologular for		
	Inetadonisin, Struc	store of biological systems	ces;	
	Introduction to kin	etics of biological systems.		
UNIT-III	Enzymes for Life	Sciences	(06 Hours)	
	Classification of el	Piotocharological applications of anyumos in very	ing	
	industries: Enzyme	Immobilization	ous	
UNIT-IV	Bio-materials		(06 Hours)	
	Classification of b	iomaterials: Comparison of properties of some com	non	
	biomaterials; Effec	ets of physiological fluid on the properties of biomater	als;	
	Biodegradable mat	Biodegradable materials; Introduction to bio-materials in medicine.		
UNIT-V	Biodiversity and	Applications of Biological science	(06 Hours)	
	Components of H	Biodiversity; Biodiversity crisis and biodiversity 1	oss,	
	Importance of biodiversity in daily life; Biodiversity and climate change;		nge;	
	Biofuel; Bio fertili	zers; Biocides; Application in food industry.		
UNIT-VI	Biosafety-regulate	ory Framework in India	(06 Hours)	
	Food Adulteration	Act (1955), Standard safety methods for hand	ling	
	microorganisms; N	lational Environment Policy (2006); Storage of hazard	lous	
	microorganisms/ge	enetically engineered organisms or cells; Case studies	for	

	handling of various microorganisms.		
*Proje	ect Based Learning		
1	Identification of microorganisms according to structure of bacterial cell		
2	Learn to cultivate bacteria		
3	Analyze enzyme applications in medical field		
4	Analyze enzyme applications in chemical engineering		
5	Analyze enzyme applications in food industry		
6	Illustration of Biomaterial applications in medical field		
7	Learn the concept of Biodiversity and climate change		
8	Analyze application of biofuel		
9	Analyze application of biocides in agricultural industry		
10	Learn handling of microorganisms at various conditions		
*Stude	nts in a group of 3 to 4 shall complete any one project from the above list.		
Term	Work		
Term	work will consist of the experiments listed below, which are to be performed in laboratory by the		
studen	ts.		
1	Enzyme catalysis		
2	Enzyme activity assay		
3	Yeast fermentation		
4	Enzyme concentration		
5	Substrate concentration effect on enzyme activity		
6	Temperature effect on enzyme activity		
7	Effect of pH on enzyme activity		
8	Effect of inhibitors on the enzymatic activity		
9	Effect of inhibitors on the enzyme activity		
Text E	Books/References:		
1	Bruce A. Alexander J. Julian L., Martin R. Keith R. and Peter W.: "Molecular Biology of the Cell", 5th		
	Edition, CRC Press, India.		
2	Paul D.: "Physics in Biology and Medicine", 3rd Edition, Academic Press, USA.		
3	3 Colin R. Bjorn K. : "Basic Biotechnology", 3rd Edition, Cambridge University Press, UK		
Syllabus for Unit Test:			
Unit T	est : I Units : I, II, and III		
Unit T	est : II UNIT : IV, V, and VI		

MATERIAL AND ENERGY BALANCE CALCULATIONS

Designation: Professional Core **Course Pre-requisites:**Basic knowledge of chemistry **Teaching Scheme Examination Scheme Credits Allotted** Lectures : 04 Hours/Week End Semester Examination : 60 Marks Theory :04 : 04 Hours/Week Total Internal Assessment : 40 Marks Total Credits : 04 : 100 Marks Total **Course Outcomes:** Solve problems based on basic chemical calculations with considering the concepts of units and 1 dimensions. 2 Estimate material balance calculations without chemical reaction for the systems involved in various unit operations. Estimate material balance calculations involving chemical reaction for the unit processes carried out in 3 chemical industry. Elaborate the concept of recycle, bypass, purge operations and solve problems based on 4 humidification, recycle, bypass and purge operations. Interpret the concept of energy balance and solve the problems based on energy balance calculations. 5 Evaluate gross and net calorific values of fuel and solve the problems based on them. 6 **Topics covered** UNIT-I **Basic Chemical Calculations** (08 Hours) Units and dimensions; Mole, atomic mass, and molar mass concept; Gas mixtures; Gas -liquid mixtures; Joule Thomson effect; Basic composition calculations for homogeneous two phase and three phase systems. UNIT-II Material Balances without Chemical Reactions (08 Hours) Generalized law of conservation of mass; Mass conservation without chemical reaction; Mass balances for unit operations encountered in chemical process industry : Distillation, extraction, evaporation, crystallization, blending etc. Material Balances involving Chemical Reactions UNIT-III (08 Hours) Generalization of law of conservation of mass involving chemical reaction and its simplification; Chemical equations and stoichiometry; Basic concepts: conversion, yield, selectivity; Material balance for unit processes encountered in chemical process industry: nitration, esterification, acylation, sulfonation etc. **Recycle, Bypass and Purge Operations UNIT-IV** (08 Hours) Necessity of recycle, bypass and purge streams; Basic calculations of recycle, bypass and purge streams for unit operations and unit processes; Industrial examples of recycling, bypassing and purging with complete mass balance viz. biofuel synthesis, food processing etc.; Humidification operation. **Energy Balance UNIT-V** (08 Hours) Basic concepts; Heat capacity; Sensible heat and latent heat: Clausius-Clapeyron equation; Standard heat of formation, combustion and reaction; Hess's law; General equation of energy balance; Energy balance approach and calculations for exothermic and endothermic reactions with industrial examples; Steam table and its utility; Utility energy balance calculations; Simultaneous heat and energy balance; Humidification operation.

UNI	T-VI	Fuels and Combustion	(08 Hours)
		Types of fuels: solid, liquid and gas; Calculations of energy content of fuel;	
		Analysis of fuel: Oxygen requirement and excessity: Adiabatic flame	
		temperature calculations: Endothermic and exothermic reaction: Energy analysis	
		and calculations.	
Pro	ject Ba	sed Learning:	
1.	Invest	gate and prepare a report on mass and energy balance for any one of following un	it operations
	for giv	ren system.	
	a) Dis	illation	
	b) Eva	poration	
	c) Ext	raction	
	d) Cry	stallization	
	e) Dry	ing. etc	
2.	Invest	gate and prepare a report onmass and energy balance for any one of following unit	processes for
	given	system. It may include overall energy and/or mass balance over a given chem	nical process
	equipr	nent.	
	a) Niti	ation	
	b) Este	erification	
	d) Fer	mentation	
	e) Sult	ionation etc.	
3.	Visit c	hemical industry and prepare a detailed report on various unit operations and unit pr	ocesses used
	in indu	istry along with their mass and energy balance.	
4.	Measu	re the calorific values of any two types of fuel and prepare an assessment or	1 the factors
	affecti	ng calorific value.	
5.	Prepar	e an report and present the mass and energy balance for unit operations and unit pr	ocesses with
	chemical reaction carried out in chemical industry.		
6.	Solve	last five years GATE question papers with reference to material and energy balance	calculations.
1.	Students have to study any five NPTEL videos related to material and energy balance calculations and		
0	prepar Taaba	e/present power point presentation.	
ð.	Decen	ical interview based on knowledge of material and energy balance calculations.	
9.	Prepar	e models for recycle, bypass and purge operations carried out in chemical industry.	acreate in
10.	w Iui	the help of this subject knowledge, write a report on now you would apply your	concepts in
11	Dropor	y.	
11.	Write	a report on your visit to research and development laboratory of national/internation	al roputo
12. Stud	onts in	a report of your visit to research and development faboratory of haronal/international	at these above
state	ents in d topic	a group of 5 to 4 shall complete any one project from the above list. In addition to s concern faculty member may design his/her won topics	these above
state	a topic	s concern racuity member may design mayner won topics.	
Tex	t Books	/References·	
1	B. L. B	hatt and S. M. Vora, Stoichiometry (SI Units) 5 th Ed., Tata McGraw Hill Publishers	New Delhi
••	2010	and and 27 for a star star star and a for a mash, a fact, full model within full shorts	,
2.	D. M	Himmelblau, Basic Principles and Calculations in Chemical Engineering, 8 th Ed. 1	Prentice Hall
-•	Public	ations. 2015.	
3.	0. A.	Hougen, K. M Watson and R. A. Ragatz, Chemical Processes Principles. Part-I.	Material and
	Energ	y Balances, Asia Publishing House, Bombay, 2004.	

- 4. R.M. Felder and R.W. Rousseau, Elementary Principles of Chemical Processes, 3rd edition, John Wiley & Sons Publications, 2005.
- 5. D. F. Rudd, G. J. Powers and J. F. Sirola, Process Synthesis, Prentice Hall Publications.
- 6. S.D. Shukla and G. N. Pandey, Chemical Engineering Calculations, Lion Press, Kanpur.
- 7. W.E. Ranz, Describing Chemical Engineering Systems, McGraw Hill Publications, 1970.

Syllabus for Unit Test:

Unit Test -I	UNIT – I ,II,III	
Unit Test -II	UNIT – IV,V,VI	

JAVA PROGRAMMING								
Designation: Computing								
Pre	Pre-requisite Courses: Basic knowledge of computer fundamentals, C/C++ programming.							
Tor								
Dra	Practical A Have Weak			• 50 Marks	TW/OP/DP $\cdot 02$			
114	ctical	. 04 110u15/ WCCK	Practical/Oral	· 50 Marks	Total Credits : 02			
			Total	: 100 Marks				
			1000	. 100 1/10/16				
Co	Course Outcomes							
1	Elucida	ate basic OOPs concepts and	d requirement of Java					
2	Clarify	Clarify class fundamentals						
3	Apply	OOPs concept using inherit	ance					
4	Elucida	late runtime exceptions						
5	Compr	ehend reading and writing f	ïles in java					
6	Clarify	collection of objects with s	earching and sorting.					
			Territor Communi					
		T (T (T	Topics Covered					
UN	11-1	Introduction to Java :	Investigation Vietural Ma	ahina (IVIM), Iawa I	Development Kit (IDK).			
		OOPs concepts; Need of Java; Java Virtual Machine (JVM); Java Development Kit (JDK);						
		byte code; variable; Data types, Handling strings, arrays, operators, and control flow						
		statements, command line arguments, Automatic type promotion.						
		1. Frograms based on loop statements.						
		2. Frograms based on arrays						
J. Frograms based on arrays. UNIT-II Class Fundamentals.								
01111-11		Java classes and objects. Methods and constructors: 'this' keyword. Method accepting and						
		returning objects: Method overloading and constructor overloading static and final						
		keywords; Nested classes.						
		4. Programs based on method accepting and returning objects.						
		5. Programs based on method overloading and constructor overloading.						
		6. Programs based on object arrays.						
UNIT-III		Inheritance:						
		Simple inheritance; Member access in inheritance; super class variable can refer subclass						
		object; super keyword; N	Iultilevel hierarchy of	inheritance; Metho	od Overriding; Dynamic			
		method dispatch (Run t	ime polymorphism);	Abstract classes;	Interfaces; DMD using			
		abstract classes and int	terfaces; Interfaces ca	an be extended; fi	nal keyword to restrict			
		inheritance; Creating packages.						
		7. Programs based on m	ultilevel hierarchy of	inheritance.				
		8. Programs based on super keywords.						
		9. Programs based on d	ynamic method dispate	ch (DMD).				
UNIT-IV Exception handling:		· · · ·						
		Exception introduction; Uncaught exception; try-catch blocks; Describing an exception;						
		throw keyword; throws	keyword; finally key	word; Manual exce	ption.			
		10. Programs based on c	iynamic method dispa	tch using abstract cl	lasses and interfaces			
		11. Programs based on r	nanual exception.					

	12. Programs based on Buffered Reader class.				
UNIT	IO Mechanism:				
	Byte stream; Character stream; Reading data from console: BufferedReader,				
	DataInputStream class; Reading and writing files: FileInputStream and FileOutputStream				
	class.				
	13. Programs based on DataInputStream class.				
	14. Programs based on FileInputStream class.				
	15. Programs based on File Output Stream class.				
UNIT	NIT-VI Collection Framework:				
	Equals () and hashCode () methods, instanceof operator; Lists; Sets; Maps; Sorting and				
	searching.				
	16. Programs based on Sorting.				
	17. Programs based on searching.				
In add	ition to these above stated programs / practicals concern faculty member may design his/her own				
programs / practicals.					
Term	Work				
Term work will consist of the programs/practicals listed above, out of which any ten programs/practicals					
are to be performed in laboratory by the students.					
Text E	Books/References				
1	H. Schildt, Java 2 Complete Reference, 5 th Edition, Tata Mc-Gra Hill.				
2	SCJP 1.6 – Khalid Mughal.				
3	SCJP 1.6 – Kathy Sierra.				
4	JAVA 7 Programming, Black Book ,Kogent Learning Solutions Inc.				
5	K. Arnold, J. Gosling, D. Holmes, The Java Programming Language, 3 rd Edition, Sun				
	icrosystems.				
6	A Primer, E. Balaguruswamy, Programming with Java, Tata Mc-Graw Hill Companies.				
7	P. Naughton, H. Schildt, The complete reference Java 2 Third Edition, TMH publication.				