Bharati Vidyapeeth Deemed University College of Engineering, Pune- 411043

The Syllabus of the Curriculum: 2014 Course Choice Based Credit System (CBCS)

B. TECH. MECHANICAL: SEMESTER-III

UNIVERSITY TAKE

Bharati Vidyapeeth University

College of Engineering, Pune

Department of Mechanical Engineering

Vision of the Bharati Vidyapeeth (Deemed to be University) College of Engineering is:

To be a World Class Institute for Social Transformation through Dynamic Education

Missions of the Bharati Vidyapeeth (Deemed to be University) College of Engineering are:

- > To provide quality technical education with advanced equipment, qualified faculty members, infrastructure to meet needs of profession & society.
- To provide an environment conducive to innovation, creativity, research and entrepreneurial leadership.
- > To practice and promote professional ethics, transparency and accountability for social community, economic & environmental conditions.

Goals of the Bharati Vidyapeeth (Deemed to be) University College of Engineering are:

- ➤ Recruiting experienced faculty.
- > Organizing faculty development programs.
- ➤ Identifying socio-economically relevant areas & emerging technologies.
- > Constant review &up gradation of curricula.
- > Up gradation of laboratories, library & communication facilities.
- ► Collaboration with industry and research & development organizations.
- ➤ Sharing of knowledge, infra-structure and resources.
- > Training, extension, testing and consultancy services.
- > Promoting interdisciplinary research.

Vision of the Mechanical Engineering Department is:

To develop, high quality Mechanical Engineers through dynamic education to meet social and global challenges.

Mission Statements of the Mechanical Engineering Department are:

- > To provide extensive theoretical and practical knowledge to the students with well-equipped laboratories and ICT tools through motivated faculty members.
- ➤ To inculcate aptitude for research, innovation and entrepreneurial qualities in students.
- To acquaint students with ethical, social and professional responsibilities to adapt to the demands of working environment.

Program Educational Objectives (PEOs) of the B. Tech. Mechanical are:

Graduates will be able,

- ➤ To fulfill need of industry and society with theoretical and practical knowledge.
- > To engage in research, innovation, lifelong learning and continued professional development.
- ➤ To fulfill professional ethics and social responsibilities.

PROGRAM OUTCOMES

Engineering Graduates will be able to:

- 1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in

societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

- 8. *Ethics*: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. *Individual and team work*: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Statements of Programme Specific Outcomes (PSOs)

PSO1: Apply the knowledge of thermal, design, manufacturing engineering and computational sciences to solve Mechanical Engineering problems.

PSO2: Apply Mechanical Engineering principles for research, innovation and develop entrepreneurial skills.

PSO3: Apply concepts of mechanical engineering to asses' societal, environmental, health and safety issues with professional ethics.

Department of Mechanical Engineering

SOLID MECHANICS

(Course Code :- C 201)

Designation of Course	Solid Mechanics		
Teaching Scheme:	Examination Scheme:		Credits Allotted
Theory:- 04Hours/ Week	End Semester Examination	60 Marks	
Practical:- 02 Hours/Week	Unit Test	20 Marks	Theory:- 04
	Assignments	10 Marks	Practical:- 01
	Internal Evaluation	10 Marks	
	Term Work / Oral	00 Marks	
	Total	100 Marks	05

Course Prerequisites:-	Student should have knowledge of	
	1. Engineering Mathematics	
	2. Engineering Mechanics	
	3. Engineering Science	
Course Objectives:-	To provide the knowledge of	
	1. To acquire basic knowledge of stress, strain due to various types of loading.	
	To draw Shear Force and Bending Moment Diagram for transverse loading.	
	3. To determine Bending, Shear stress, Slope and Deflection on Beam.	
	4. To solve problems of Torsional shear stress for shaft and Buckling for the column.	
	5. To apply the concept of Principal Stresses and Theories of Failure.	
Course Outcomes:-	tudents should be able to	
	1. Understand the concept of various types of stresses and strain developed in materials and analyze stress strain.	
	 Understand the concept of principal stresses and theories of failure to analyze determine stresses. 	
	3. Understand the concept of SFD and BMD and evaluate the forces acting on components.	
	Understand the concept of Torsional, bending and axial force acting on the shaft and evaluate torsional shear stress in shaft and buckling on column.	
	5. Understand the concept of Bending stresses and shear stresses and analyze bending stress distribution and shear stress distribution for	
	various cross sections of beam.6. Understand the basic concept of Design process and apply it to design a simple machine components	

	Unit 1	Simple stresses & strains	(08 Hrs)
ĺ	Revision	of Concept of stresses & strains (linear, lateral, shear, thermal & volumetric). Hooke's la	w, Poisson's
	ratio, Mo	dulus of Elasticity, Modulus of Rigidity, Bulk Modulus. Stress-strain diagrams for duct	tile & brittle

materials. Various strengths of material- Yield strength, Ultimate tensile strength etc, Concept of 3D stress state. Interrelation between elastic constants, Proof stress & True stress & strain. Axial force diagrams, stresses and strains in determinate & indeterminate homogeneous & composite bars under concentrated loads & self weight. Temperature stresses in simple & composite members. Strain energy due to axial load (gradual, sudden & impact), strain energy due to self weight.

Unit 2 | Principal stresses & strains

(08 Hrs)

Normal & shear stresses on any oblique plane. Concept of principal planes derivation of expression for principal stresses & maximum shear stress, position of principal planes & planes of maximum shear, graphical solution using Mohr's circle of stresses, combined effect of axial force, bending moment & torsional moment on circular shafts (solid as well as hollow) **Theories of elastic failure:** Maximum principal stress theory, maximum shear stress theory, maximum distortion energy theory, maximum strain theory – their applications & limitations.

Unit 3 | Shear Force & Bending Moment Diagrams

(08 Hrs)

Shear forces & bending moments of determinate beams due to concentrated loads, uniformly distributed loads, uniformly varying loads & couples, relation between SF & BM diagrams for cantilevers, Simply supported beam. Maximum bending movement & positions of points of contra flexure, construction of loading diagrams & BMD from SFD & construction of loading Diagram & SFD from BMD. Slope & deflection of beams - relation between BM & slope, slope & deflection of determinate beams, double integration method (Macaulay's method), derivation of formula for slope & deflection for standard cases

Unit 4 Torsion and Buckling of columns

(08 Hrs)

Stresses, strain & deformations in determinate shafts of solid & hollow, homogeneous & composite circular cross section subjected to twisting moment, derivation of torsion equation, stresses due to combined torsion, bending & axial force on shafts .Concept of buckling of columns, derivation of Euler's formula for buckling load for column with hinged ends, concept of equivalent length for various end conditions. Limitations of Euler's formula, Rankine's formula, safe load on columns

Unit 5 | Stresses in Machine Elements

(08 Hrs)

Bending stresses:

Theory of simple bending, assumptions, derivation of flexural formula, second moment of area of common cross sections(rectangular, I,T,C) with respective centroidal & parallel axes, bending stress distribution diagrams, moment of resistance & section modulus calculations.

Shear stresses:

Concept, derivation of shear stress distribution formula, shear stress distribution diagrams for common symmetrical sections, maximum and average shears stresses, shear connection between flange & web

Unit 6 Design Process

(08 Hrs)

Machine Design, Traditional design methods, Basic procedure of Machine Design, Forming Design specifications, Design for:- 1) functional requirement, 2) customer orientation 3) Safety requirement & 4) Analysis for use. Requisites of design engineer, Design of machine elements, Sources of Design data, Use of Design data book, Use of standards in design, Selection of preferred sizes, Design Synthesis, Creativity in design. Use of internet for gathering information & Consideration of energy requirement, product life cycle & design for environment.

Design of Simple Machine parts:

Factor of safety, Service factor, Design of simple machine parts - Cotter joint, Knuckle joint and Levers, Eccentric loading, Stresses in curved beams (for circular cross-section only).

Assignments:

- 1. Minimum five to six theory questions on simple stresses and strains.
- 2. Minimum five to six problems on simple stresses and strains
- 3. Minimum five to six theory questions of principle stresses and strains.
- 4. Minimum five to six problems of principle stresses and strains.
- 5. Minimum five to six problems on shear force and bending moment diagrams.
- 6. Minimum five to six theory questions on shear force and bending moment diagrams.

- 7. Minimum five theory questions on torsion and deflection of beam.
- 8. Minimum five problems on torsion and deflection of beam.
- 9. Minimum five to six problems on bending stresses and shear stresses.
- 10. Minimum five theory questions on bending stresses and shear stresses.
- 11. Minimum five to six problems on design of simple machine parts.12. Minimum five to six theory on design of simple machine parts.

Text Books/ Reference Books

- 1. Timoshenko & Young, Engineering Mechanics, Tata McGraw Hill Book Publishing co. Ltd. 1981.
- 2. James Gere, Mechanics of Materials, Thomson Learning
- 3. S Ramamrutham, Strength of Materials
- 4. V. B. Bhandari, Design of Machine Elements, Tata McGraw Hill Publication
- 5. J. E. Shigley, Mechanical Engineering Design, McGraw Hill

Unit Tests

Unit Test-I	Unit-I,II, III
Unit Test-II	Unit-IV, V, VI

Fluid Mechanics

(Course Code :- C 202)

Designation of Course	Fluid Mechanics		
Teaching Scheme:	Examination Scheme:		Credits Allotted
Theory:- 04Hours/ Week	End Semester Examination	60 Marks	
Practical:- 02 Hours/Week	Unit Test	20 Marks	Theory:- 03
	Assignments	10 Marks	Practical:- 01
	Internal Evaluation	10 Marks	
	Term Work / Oral	50 Marks	
	Total	150 Marks	04

Course Prerequisites:-	Student should have knowledge of	
	Basic knowledge of Fundamentals of Mechanical Engineering.	
	2. Basic knowledge of Physics and Engineering Mechanics.	
	3. Basic knowledge of Calculas.	
Course Objectives:-	To provide the knowledge of	
	To provide knowledge of fluid properties and hydrostatic law	
	2. To teach about fluid kinematics and dynamics.	
	3. To provide knowledge of laminar and turbulent fluid flows	
	4. To explain about flow through pipes, flow over immersed bodies and	
	dimensional analysis.	
Course Outcomes:-	udents should be able to	
	1. understand the concepts of fluid kinematics and analyze related phenomena.	
	2. understand the concepts of fluid statics; and analyze related phenomena.	
	3. understand the concepts of fluid dynamics; and analyze related phenomena.	
	4. understand the concepts of laminar fluid flows and flow around immersed	
	bodies; and also analyze related phenomena.	
	5. understand the concepts of fluid flow through pipes; and also analyze head	
	losses through pipes.	
	6. understand the concepts of turbulent fluid flows, boundary layer theory and	
	dimensional analysis; and also analyze related phenomena.	

Unit 1	Fluid Kinematics:	(10 Hrs)	
Types of	Types of flow- steady, unsteady, uniform, non-uniform, laminar, turbulent, One, Two and Three dimensional,		
compress	compressible, incompressible, rotational, Irrotational. Stream lines, path lines, streak lines, velocity components,		
convectiv	convective and local acceleration, velocity potential, stream function, continuity equation in Cartesian co-ordinates,		
flow net.	flow net.		
Unit 2	Fluid Statics:	(06 Hrs)	
Hydrostatic law, Pascal's law, Pressure at a point, Total Pressure, Centre of pressure, Liquid pressure on a			
plane(Horizontal, Vertical, Inclined) & Curved surfaces, Archimedes Principle, Buoyancy and stability of floating			
and submerged bodies, Metacentric height.			
Unit 3	Fluid Dynamics:	(08 Hrs)	
Introduction to Navier-Stoke's Equation, Euler equation of motion along a stream line, Bernoulli's equation,			

application of Bernoulli's equation to Pitot tube, Venturimeter, Orifices, Orifice meter, Triangular Notch & Rectangular Notch .(Without considering Velocity of Approach)

Unit 4 Laminar Flow & Flow around Immersed Bodies:

(08 Hrs)

Definition, relation between pressure and shear stresses, laminar flow through round pipe, fixed parallel plates. Introduction to CFD Methodology (Elementary Treatment).Lift and Drag, Classification of Drag, Flow around circular cylinder and Aerofoil, Development of lift on Aerofoil.

Unit 5 | Flow through Pipes:

(08 Hrs)

TEL, HGL, Energy losses through pipe, Darcy-Weisbach equation, Moody diagram, Minor losses in pipes, pipes in series and parallel, Syphon, Transmission of power, Water hammer in pipes,

Unit 6 Turbulent Flow, Boundary Layer & Dimensional Analysis:

(08 Hrs)

Turbulent Flow, Velocity Distribution, Development of Boundary Layer on a flat plate, Laminar and Turbulent Boundary Layers, Laminar sub layer, Separation of Boundary Layer and Methods of Controlling. Dimensions of physical quantities, dimensional homogeneity, Buckingham pi Theorem, Important dimensionless numbers, Model analysis (Reynolds, Froude and Mach).

Assignment

- 1. At least Five theory questions on Fluid Kinematics.
- 2. At least theory questions on Fluid Statics.
- 3. At least Five theory questions on Fluid Dynamics.
- 4. At least Five theory questions on flow and flow around immersedbodies.
- 5. At least Five theory questions on flow though Pipes.
- 6. At least Five theory questions on turbulent flow.
- 7. At least Five numerical questions on Fluid Kinematics.
- 8. At least Five numerical questions on Fluid Statics.
- 9. At least Five numerical questions on Fluid Dynamics.
- 10. At least Five numerical questions on flow and flow around immersed bodies.
- 11. At least Five numerical questions on flow though Pipes.
- 12. At least Five numerical questions on turbulent flow.

Text Books/ Reference Books

- Dr. P.N. Modi and Dr. S.M. Seth, "Hydraulics and Fluid Mechanics including Hydraulic Machines", Standard
- 2. Book House.
- 3. Dr. R.K. Bansal, "Fluid Mechanics and Hydraulic Machines l", Laxmi Publication Pvt. Ltd., New Delhi.
- 4. Streeter V. L. and Wylie E. B. Fluid Mechanics McGraw Hill International Book Co.
- 5. Garde R. J. and Mirajgaonkar, Engineering Fluid Mechanics, Nem Chand & Bros, Roorkee, SCITECH, Publication
- 6. (India) Pvt. Ltd.
- 7. Cengel & Cimbla Fluid Mechanics, TATA McGraw-Hill.
- 8. Irving Shames, "Mechanics of Fluid", McGraw Hill Publication.

Unit Tests-

Unit Test-I	Unit-I, II, III
Unit Test-II	Unit- IV, V, VI

ENGINEERING THERMODYNAMICS

(Course Code :- C 203)

Designation of Course	Engineering Thermodynamics		
Teaching Scheme:	Examination Scheme:		Credits Allotted
Theory:- 03 Hours/ Week	End Semester Examination	60 Marks	
	Unit Test	20 Marks	03
	Assignments	10 Marks	03
	Internal Evaluation	10 Marks	
	Term Work / Oral	50 Marks	01
	Total	150 Marks	04

Course Prerequisites:-	Student should have knowledge of
	1. Fundamentals of Mechanical Engineering
	2. Higher Secondary Physics
	3. Engineering Mathematics
Course Objectives:-	To provide the knowledge of
	1. laws of thermodynamics and their applications
	2. steam generators and their performance analaysis.
	3. reciprocating and rotary compressors.
	4. fuels, combustion and introduce availability.
Course Outcomes:-	Students should be able to
	1. understand concepts of second law of thermodynamics and entropy
	2. understand construction and working of steam generators; and analyze
	their performance.
	3. apply the knowledge of properties of steam for different vapour
	processes and power cycles.
	4. understand construction and working of reciprocating air compressors
	and analyze their performance.
	5. understand operations of rotary air compressors and analyze their
	performance.
	6. understand the concept of availability and analyze exhaust gas
	composition.

Unit 1 Second Law of Thermodynamic and Entropy:	(06Hrs)	
Second Law of Thermodynamics: Limitations of first law of thermodynamics, heat engine, refrigerator and heat		
pump, Kelvin-Planck's statement & clausius statement, equivalence of Kelvin-Planck's and clausius	ius statements,	
perpetual motion machine of second kind, carnot cycle & carnot heat engine. Entropy: Entropy as a property, second		
law analysis for entropy, clausius inequality, principle of increase of entropy, irreversibility		
Unit 2 Steam Generators:	(06Hrs)	
Classification, constructional details of process and power boiler, boiler mountings and accessories, equivalent		
evaporation, boiler efficiency, energy balance, boiler controls, boiler draught.		
Unit 3 Ideal Gas and Properties of Steam and Vapour Power Cycle: (06Hrs)		
Ideal Gas definition, Gas Laws: Boyle's law, Charle's law, Avagadro's Law, Equation of State, Specific Gas		

constant and Universal Gas constant, Ideal gas processes- on P-V and T-S diagrams, Formation of steam, Phase changes, Properties of steam, Use of Steam Tables, Study of P-V, T-S and Mollier diagram for steam,. Non flow and steady flow vapor processes, work transfer & heat transfer, use of P-V, T-S, H-S diagrams for steam, determination of dryness fraction, and study of calorimeters. Vapour Power Cycle: Carnot cycle using steam, ideal rankine cycle, calculation of thermal efficiency, specific steam consumption, work ratio, comparison of carnot and rankine cycle, effect of superheat.

Unit 4 | Single Stage and Multi stage Reciprocating Air Compressor:

(06Hrs)

Uses of compressed air, classification, constructional details of single stage compressor, computation of work done, isothermal work done, isothermal efficiency, effect of clearance, volumetric efficiency, FAD, theoretical and actual indicator diagrams, method of improving volumetric efficiency. Need of multi staging, multi stage compressor, work done, volumetric efficiency, condition for maximum efficiency, intercooling, actual indicator diagram.

Unit 5 Rotary Compressor:

(06Hrs)

Introduction, classification and working principles of different types of compressors, comparison between reciprocating and rotary compressors, positive displacement and rotodynamic compressors, static and total head, work done efficiencies, surging, and choking, stalling, characteristics curves for rotodynamic compressors. selection of compressors for various applications.

Unit 6 Fuels and Combustion and Availability:

(06Hrs)

Mass fraction, mole fraction, combustion equation, theoretical air, excess and deficient air, stoichiometric and actual air to fuel ratio, analysis of products of combustion, gravimetric and volumetric analysis and their conversions, method to determine flue gas analysis - CO, CO2, O2, HC, NOx, smoke. Availability: High and low grade energy, available and unavailable energy, loss of available energy due to heat transfer through a finite temperature difference.

Assignments

- 1. At least five theory questions based on Second law of thermodynamic.
- 2. At least five numerical questions based on Second law of thermodynamic.
- 3. At least five theory questions based on cannot cycle& cannot heat engine.
- 4. At least five theory questions based on boiler mounting & accessories. boiler mounting & accessories.
- 5. At least five numerical questions based on equivalent evaporation and boiler efficiency.
- 6. At least five theory questions based on Ideal gas and properties of steam.
- 7. At least five numerical questions based on properties of steam.
- 8. At least five theory questions based on single stage & multistage reciprocating Air compressor.
- 9. At least five numerical questions based on reciprocating air compressor.
- 10. At least five theory questions based on rotary compressor.
- 11. At least five numerical questions based on rotary compressor.
- 12. At least five theory questions based on fuels and combustion.
- 13. At least five theory questions based on availability.

Term work

- 1. Determination of calorific value using bomb calorimeter.
- 2. Demonstration of exhaust gas analysis by using any commercially available test rig.
- 3. Test on reciprocating air compressor to determine volumetric efficiency, isothermal efficiency and FAD.
- 4. Determination of dryness fraction using any commercial available test rig.
- 5. Study of boiler mounting and accessories
- 6. Study of package boiler / modern boiler
- 7. Report on visit to any process industry, which uses boiler.
- 8. Performance test on rotary air compressor/ blower.
- 9. Trial on boiler to determine boiler efficiency, equivalent evaporation and energy balance sheet.
- 10. Study of rotary type positive displacement compressor.

Text Books

- 1. P. K. Nag, Engineering Thermodynamics, Tata McGraw Hill Publications
- 2. P. L. Ballany, Thermal Engineering, Khanna Publications
- 3. V. P. Vasandani and D. S. Kumar, Heat Engineering Metropolitan book Company, New Delhi
- 4. R.K.Rajput, Engineering Thermodynamics, EVSS Thermo Laxmi Publications
- 5. Y. Cengel & Boles, Thermodynamics An engineering approach, Tata McGraw Hill Publications
- 6. Kothandarman & Domkundwar, Thermodynamics & Heat Engines
- 7. Rayner Joel, Engineering Thermodynamics, ELBS Longman
- 8. Hawkins G. A., "Engineering Thermodynamics", John Wiley and Sons.

Unit Tests-

Unit Test-I	Unit-I,II ,III
Unit Test-II	Unit-IV,V,VI

Engineering Mathematics -III (Course Code :- C 204)

Designation of Course	Engineering Mathematics -III		
Teaching Scheme:	Examination Scheme:		Credits Allotted
Theory:- 03 Hours/ Week	End Semester Examination	60 Marks	
	Unit Test	20 Marks	03
	Assignments	Assignments 10 Marks	
	Internal Evaluation	10 Marks	
	Total	100 Marks	03

Course Prerequisites:-	Student should have knowledge of	
	1. Student should have Basic Knowledge of differential and Integral	
	calculus	
	2. Student should have Basic Knowledge of statistics and Probability	
Course Objectives:-	To provide the knowledge of	
	1. Effectively formulate mathematical model using PDE	
	2. Analyze numerical data using statistical methods	
	3. Obtain z- score of normal distribution	
Course Outcomes:-	Students should be able to	
	1. Understand the mathematical modeling of systems using differential	
	equations and ability to solve linear differential equations with constant	
	coefficient. imaginary points using argand diagram.	
	2. Understand the concepts of Laplase Transform and Apply to formulate	
	mathematical model using PDE.	
	3. Understand various forms of Partial differential equation	
	4. Understand Statistical methods and Apply to analyze the numerical data	
	5. Understand the concept of Correlation and Regression coefficient.	
	6. Understand the concept of Normal distribution	

Unit 1	Linear Differential Equations (LDE):	(06Hrs)	
LDE with	LDE with constant coefficients, Method of variation of parameters, Homogeneous Equations, Cauchy's and		
Legendre	Legendre's DE. Simultaneous & Symmetric Simultaneous DE. Application to mechanical systems.		
Unit 2	Transforms:	(06Hrs)	
Laplace T	Fransform (LT): LT of standard functions, properties and theorems, Inverse LT, method of fire	nding Inverse	
LT, Appl	lication of LT to solve LDE.		
Fourier T	ransform (FT): Fourier Integral theorem, Fourier transform Fourier Sine &Cosine trans	form, Inverse	
Fourier T	ransform.		
Unit 3	Partial Differential Equations (PDE):	(06Hrs)	
Basic con	Basic concepts, modeling: Vibrating String, Wave equation. Method of separation of variables, Use of Fourier		
series, He	series, Heat equation: one and two dimensional heat flow equations, Solution by Fourier Transforms, modeling of		
two dimer	two dimensional wave equation		
Unit 4	Unit 4 Measures of central value: (06Hrs)		
Arithmeti	Arithmetic mean , median and mode, geometric mean and harmonic mean, dispersion, mean deviation, standard		
deviation,	deviation, skeweness, Moments and kurtosis.		

Unit 5	Correlation and Regression:	(06Hrs)		
Significa	Significance of the study of correlation, types of correlation, coefficient of correlation, difference between			
correlatio	correlation and regression . Regression euations, standard error of estimate.			
Unit 6	Probability and Distribution: (06Hrs)			
	11 obtainity and Distribution .	(UUIIIS)		
	probability, conditional probability, bayes theorem, mathematical expectations, random	` '		

Assignment

F test.

- 1. At least Five numerical questions on Linear Differential Equations
- 2. At least Five numerical questions on Transforms.
- 3. At least Five numerical questions on Partial Differential Equations
- 4. At least Five numerical questions on Measures of central value
- 5. At least Five numerical questions on Correlation and Regression
- 6. At least Five numerical questions on Probability and Distribution

Text Books

- 1. Advanced Engineering Mathematics by Peter V. O'Neil (Cengage Learning).
- 2. Advanced Engineering Mathematics by Erwin Kreyszig (Wiley Eastern Ltd.).
- 3. Engineering Mathematics by B.V. Raman (Tata McGraw-Hill).
- 4. Advanced Engineering Mathematics, 2e, by M. D. Greenberg (Pearson Education).
- 5. S. P. Gupta: statistical methods- schand and sons.
- 6. Higher Engineering Mathematics by B. S. Grewal (Khanna Publication, Delhi).
- 7. Applied Mathematics (Volumes I and II,III) by P. N. Wartikar & J. N. Wartikar (Pune VidyarthiGrihaPrakashan, Pune).

Unit Test

Unit Test-I	Unit-I,II ,III
Unit Test-II	Unit-IV,V,VI

COMPUTER PROGRAMMING & SIMULATION

(Course Code :- C 205)

Designation of Course	Computer Programming & Simulation			
Teaching Scheme:	Examination Scheme:		Credits Allotted	
Theory:- 03 Hours/ Week	End Semester Examination	60 Marks		
Practical:- 02 Hours / Week	Unit Test	20 Marks	Theory : 02	
	Assignments	10 Marks	Theory: 03	
	Internal Evaluation	10 Marks		
	Term Work / Oral	50 Marks	Practical:-01	
	Total	150 Marks	04	

Course Prerequisites:-	Student should have knowledge of	
	Engineering Mathematics II	
Course Objectives:-	To provide the knowledge of	
	1. To provide the fundamental knowledge of modeling, system and simulation	
	2. To provide the knowledge of monte carlo methods of simulation	
	3. To provide knowledge of random variable and distributions	
	4. To provide knowledge of time and event based simulation with real life	
	applications	
Course Outcomes:-	Students should be able to	
	1. Understand the fundamental knowledge of Programming, modeling, system and simulation	
	2. Understand monte carlo methods of simulation and apply them in real life problems	
	3. Understand concept of random variable, distributions and apply them in probalistic engineering models	
	4. Understand concepts of time based simulation and apply them in real life problems	
	5. Understand concepts of event based simulation and apply them in real life problems	
	6. Understand concept of simulation experiments	

	Course Contents				
Unit 1	it 1 Concept of System and Type of Models				
Physical	Physical model, Mathematical model, Types of mathematical model, Dynamic Versus Static Models, Continuous-				
Time Ve	rsus Discrete-Time, Dynamic Models, Quantitative Versus Qualitative Models, Mecha	nical s	system		
modeling	examples.				
Unit 2	Concept of Simulation	(08	Hrs)		
Simulatio	Simulation Basics, When Simulation Is the Appropriate Tool, when Simulation Is Not Appropriate, Advantages and				
Disadvan	tages of Simulation, Areas of Application, Steps in a Simulation Study				
Simulatio	Simulation and analytical methods, Basic nature of simulation, The simulation process, Types of system simulation,				
Generation	Generation of random numbers .Monte Carlo Simulation.				
Unit 3	Unit 3 Probability Used in Simulation (08 Hrs)				
Basic Pro	Basic Probability Concepts, Discrete Random Variable, Expected Value and Variance of a Discrete Random				
Variable,	Variable, Measure of Probability Function, Continuous Random Variable, Exponential Distribution, Mean and				
Variance	Variance of Continuous Distribution, Normal Distribution.				

Unit 4	Continuous an Discrete Systems Simulation	(08	Hrs)	
Introducti	Introduction, Simulation of Pure pursuit problem, exponentional growth model, simulation of water reservoir			
system, T	rajectory simulation, suspension system, simulation of pendulum.			
Unit 5	Unit 5 Simulation of Queuing Systems and Inventory Systems and inventory systems (08 Hrs			
Discrete S	Discrete Simulation, Continuous System Simulation. Simulation of Queuing Systems, Inventory Control Models			
Unit 6	Design of Simulation Experiments	(08	Hrs)	
Introduction, development of simulation experiments, principles of verification, validation and accreditation,				
Simulation experimentation, classical experimental design, validation of simulation experiments, evaluation of				
simulation	simulation experiments.			
Simulatio	Simulation Languages			

Term work

Following assignment using MATLAB

- 1. Creating a One-Dimensional Array (Row / Column Vector) Creating a Two-Dimensional Array
- 2. Performing matrix manipulations Concatenating, Indexing, and Sorting Normal Distribution
- 3. Simulation of water reservoir system
- 4. Trajectory simulation
- 5. Suspension system
- 6. Simulation of pendulum
- 7. Simulation of any one Discrete Simulation, Continuous System Simulation, Simulation of Queuing Systems, Inventory Control Models.

Assignments

- 1. At least five theory questions on basics of simulation.
- 2. At least five theory questions on Monte-Carlo simulation.
- 3. At least five theory questions on various distributions.
- 4. At least five simulation questions on various continuous models.
- 5. At least five simulation questions on various discrete models.
- 6. At least five theory questions on advanced simulation and simulation language.
- 7. At least five numerical questions on Monte-Carlo simulation.
- 8. At least five numerical questions on various distribution
- 9. At least five numerical questions on various continuous models.
- 10. At least five numerical questions on various discrete models.
- 11. At least five MATLAB programs on continuous models.
- 12. At least five MATLAB programs on discrete models.

Text Books/ Reference Books

- 1. Robert E. Shannon, "System Simulation The art and science", Prentice Hall, New Jersey, 1995.
- 2. D.S. Hira, "System Simulation", S. Chand and company Ltd, New Delhi, 2001.
- 3. Geoffrey Gordon, System Simulation; Prentice Hall.
- 4. Robert E. Shannon; System Simulation: The Art and Science; Prentice Hall
- 5. J. Schwarzenbach and K.F. Gill Edward Arnold; System Modelling and Control
- M Close and Dean K. Frederick; Modeling and Analysis of Dynamic Systems; Houghton Mifflin

Unit Tests-

Ţ	Unit Test-I	Unit-I,II
Ţ	Unit Test-II	Unit-III,IV

PROFESSIONAL SKILLS DEVELOPMENT-III

(Course Code :- C 206)

Designation of Course	Workshop Technology		
Teaching Scheme:	Teaching Scheme: Examination Scheme:		Credits Allotted
Theory:- 4 Hours/ Week	End Semester Examination	100 Marks	
Practical: Hours/ Week	Unit Test	Marks	Theory: 04
	Assignments	Marks	Practical: 00
	Internal Evaluation	Marks	
	Term Work	Marks	
	Total	100 Marks	04

Course Prerequisites:-	Stud	Student should have knowledge of	
	1.	Knowledge of basic Math and reasoning	
	2.	Awareness of phrasal verbs	
	3.	Basic knowledge of writing techniques taught to them in the earliear	
		semester	
	4.	Basic knowledge of self awareness	
	5.	Awareness about leadership skills and presentation skills	
Course Objectives:-	To pr	rovide the knowledge of	
	1.	To develop students' skills in aptitude and reasoning whereby enhancing	
		employability skills.	
	2.	To flourish the skills of learning advance vocabulary and use them for	
		professional communication	
	3.	To promote grooming skills in graduates and make them competent to	
		excel in business communication and presentation	
Course Outcomes:-	Stude	udents should able to understand	
	1.	Understand short tricks of the aptitude and reasoning and apply them in	
		recruitment and competitive examinations	
	2.	Understand the advance idioms, phrases and apply them to present	
		themselves with finesse for corporate ventures	
	3.	Understand the process conversion of thoughts and ideas into written	
		communication in an effective coherent and logical way	
	4.	Understand the self appraisal process and apply the techniques of	
		SWOT to accelerate conversion of weaknesses into strengths	
	5.	Understand the kinds of leaderships and apply them to groom	
		themselves into potential leader	
	6.	Understand the trick and techniques of power point presentation and	
		apply them in designing an effective business presentation	

	Course Contents				
Unit I	Aptitude (Maths, Logical Reasoning, English)	(18 Hours)			

	Maths			
	■ Enjoy maths + Number system			
	Number system			
	 Percentage, profit and loss 			
	Logical Reasoning			
	 Coding, Decoding, Number series, 			
	■ Blood relation Directions, cubes & dices			
	• English			
	■ Vocabulary-1			
	 Confusing words-1(Homonyms) 			
Unit II	Essential Grammar - III	(6 Hours)		
	Idioms and phrases			
	Usage of Idioms & phrases in daily conversation			
	Activities			
	 Academic word list- Words to be used in business communication 			
Unit III	Written Communication- II	(4 Hours)		
	Essay writing			
	 Mnemonics to develop ideas and write essays 			
	Structure of essays			
	Technical writing			
T7 14 TT7	Report writing			
Unit IV	SWOT Analysis	(6 Hours)		
	Introduction to SWOT			
	Importance to SWOTIndividual & Organizational SWOT Analysis			
	Identifying strengths, weaknesses, threats & opportunities			
	Short term goals& Long term goals, Career planning			
Unit V	Interpersonal Skills - III	(4 Hours)		
	Introduction to leadership skills			
	Importance of leadership skills			
	Types of leadership skills			
	 Are leaders born or made? 			
Unit VI	Presentation Skills	(4 Hours)		
	Introduction to PowerPoint presentation			
	Structure & flow of presentation			
	Importance of body language			
	 Presentation by students-evaluation& feedback by trainers 			

Text Books/ Reference Books

- 1. **APAART:** Verbal Ability.
- 2. **APAART:** Logical Reasoning.
- 3. **APAART:** Quantitative Aptitude.
- 4. **APAART:** Speak Well 1 (English Language and Communication).
- 5. **APAART:** Speak Well 2 (Soft Skills).
- 6. **APAART:** Verbal Ability

PRODUCTION PRACTICE-II

(Course Code :- C 207)

Designation of Course	Production Practice-II			
Teaching Scheme:	Examination Scheme:		Credits Allotted	
Theory: Hours/ Week	End Semester Examination	Marks		
	Unit Test	Marks		
	Assignments	Marks		
	Internal Evaluation	Marks		
Practical:- 4 Hours/ Week	Term Work	50 Marks	Practical:- 01	
	Total	50 Marks	01	

Course Prerequisites:-		ent should have knowledge of
	1.	Basic knowledge of Engineering Graphics
	2.	Basic knowledge of workshop Technology and Production practice I
Course Objectives:-	To provide the knowledge of	
	6.	To acquire the skills of TIG/MIG and arc welding process.
	7.	To acquire the skills of pattern making.
	8.	To acquire the skills of sand testing.
	9.	To acquire the skill of sand moulding.
Course Outcomes:-	Students should able to understand	
	1.	Understand the TIG, MIG and arc welding processes and apply for
		welding joints.
	2.	Understand the pattern making operations to create the patterns using
		wood turning operation.
	3.	Understand the different core making practices and apply them in
		pattern making.
	4.	Understand the properties of sand by caring out sand testing and apply
		them for sand molding processes.
	5.	Understand the sand moulding processes and create a sand mould.
	6.	Apply the moulding process to create the sand casting.

Course Contents

Term Work

Each candidate shall be required to complete and submit the following jobs:

- 1. Welding-TIG / MIG OR Arc Welding (One Job)
- 2. Pattern making: A solid pattern consisting of wood turning or a core box. (One Job)

It should follow the colour code in pattern making..

- 3.Sand Testing.(Any Two)
- 3.Sand Moulding.. (One Job)

Note

Practical examination of 3 hours duration based on above term work will be Conducted at the end of semester.